Spelling suggestions: "subject:"alarme false"" "subject:"alarme falls""
1 |
Desempenho do gráfico de controle CUSUM tabular para o monitoramento da média / The performance of tabular CUSUM control chart for monitoring the meanLara, Rodrigo Luiz Pereira 16 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:32:14Z (GMT). No. of bitstreams: 1
texto completo.pdf: 2818845 bytes, checksum: be3f419fcc4c9f0b3cb6050f150daf3c (MD5)
Previous issue date: 2012-02-16 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / This study aimed to estimate the probabilities of false and true alarms caused by the Cumulative Sum control chart over the i rational subgroups, according to various combinations of size n of subgroup rational, standardized decision interval h* and the tolerance value k*. To study them, were simulated data from a random variable Y, under normal distribution with mean μ0 = 0 and standard deviation 1 s 0 = for a process under statistical control over 50 rational subgroups, for n between 1-16. To this end, 1000 simulations were performed by rational subgroup. Then four out of control processes have been set for the statistical average at all rational subgroup ( μ1 = μ0 +ds 0 ) in which d refers to the displacement of the average in numbers of standard deviations of the process. The probability of false alarm a decreases with the increase, increase and decrease of k*, h* and i respectively, while the probability of true alarm Pd has direct relation to n and i, and inverse relation to h* for the same pre-defined minimum difference between the means μ0 and μ1 considering the choice of k* as being half of that difference in number of standard deviations. Both probabilities of true and false alarms were obtained by the normal and lognormal 3P probability distributions adjusted to the random variable Z(i) + S (i −1)* H . In order to give a power greater than 0.90 and a equal or less than 0.05 or 0.01 were recommended to different combinations of k*, h*, i and n. / O presente trabalho teve por objetivo estimar as probabilidades dos alarmes falsos e verdadeiros provocados pelo gráfico de controle CUSUM tabular ao longo dos i subgrupos racionais, em função de diferentes combinações entre o tamanho n do subgrupo racional, o interval o de decisão padronizado h* e o valor de tolerância k*. Para estudá-los foram simulados dados de uma variável aleatória Y, sob distribuição normal com média μ0 = 0 e desvio-padrão 1 s 0 = para um processo sob controle estatístico para até 50 subgrupos racionais com até 16 repetições. Para tanto, foram realizadas 1000 simulações por subgrupo racional. Em seguida foram estabelecidos outros quatro processos fora de controle estatístico para a média em todos os subgrupos racionais ( μ1 = μ0 +ds 0 ), em que d se refere ao deslocamento da média em número de desvios-padrão do processo. A robabilidade do alarme falso (a ) diminui com os respectivos aumento, aumento e diminuição de k*, h* e i, enquanto a probabilidade do alarme verdadeiro (Pd) possui relação direta com n e i, e inversa com h* para uma mesma diferença mínima pré-definida entre as médias μ1 e μ0 e considerando-se a escolha de k* como sendo a metade desta em número de desvios-padrão. Ambas probabilidades dos alarmes falso e verdadeiro foram obtidas por meio das distribuições de probabilidade normal e lognormal 3P ajustadas à variável aleatória Z(i) + S (i −1) * H . Para conferir um Pd igual ou superior a 0,90 e a igual ou inferior a 0,05 ou 0,01 recomendou-se diferentes combinações de k*, h*, i e n.
|
2 |
Monitoramento de processo seis sigma por gráficos de controle de Shewhart / Monitoring of six sigma process by Shewhart control chartsMarques, Caio Augusto Nunes 02 August 2013 (has links)
Made available in DSpace on 2015-03-26T13:32:20Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1927442 bytes, checksum: 4d51dbf78a2cc4c2f8a631ebde5dc6fe (MD5)
Previous issue date: 2013-08-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Developed at Motorola in 1987 the Six Sigma methodology seeks, by reducing the variability of key-processes, obtain critical to quality characteristics (CTQs) with defect probabilities close to zero. It has a Six Sigma process when the distance between the CTQ s target value (VN) and its nearest specification limit, is equal or greater than six standards-deviations (σ). In practice, despite the big attention being paid to the process, the average of the CTQ s probabilities distribution is able to shift until 1,5σ from the target value which even so, the process will be considered Six Sigma. So there is an interval between 4,5 and 6σ in which the process can vary without losing the quality level considered as world class . Thus, in this study, aimed establishes recommendations for planning the Shewhart control charts ̅ and R for monitoring Six Sigma processes. To do so, it was established a reference performance in which it was assumed the joint probability of false alarm equal to or less than 0.01; and the joint probability of true alarm growing according the reduction of the process Sigma level, from 0 in 6σ processes to 0.10 in those 5σ, reaching 0.90 at 4.5σ processes until reaches the unit for 3σ processes and inferior. Accordingly, it were investigated plannings with combinations between n = 2, 3, 4 and 5 and k = 2.5, 2.6, 2.7, 2.8, 2.9 and 3.0. It was identified that the pair of graphs in question performed well when the process was only under the effect of average displacement and lost performance occurred the increase of the variation as the only disturbance present or when the two anomalies were acting. It was possibly identify that the average displacement is the most observed problem, the simultaneous occurrence of both anomalies is less frequent and exclusive presence of increased variation is rare. Therefore, it was recommended that planning with n = 5 and k = 2.9 for monitoring Six Sigma Practical processes (ie, with sigma level between 4.5 and 6σ), which performed well only when the process was mainly under the effect of the average displacement. However, it is expected a good performance of this planning when the process is mainly under the effect of the average displacement. Thus, it is likely that the processes quality level falls without any signal from the control charts in question to indicate quality loss due to the increase of the variation, with or without the presence of the average displacement. / Desenvolvida em 1987 na Motorola, a metodologia Seis Sigma busca, mediante redução na variabilidade dos processos-chave, obter características críticas para a qualidade (CTQs) com probabilidades de defeitos próximas de zero. Tem-se um processo Seis Sigma quando a distância entre o valor-alvo (VN) da CTQ e o limite de especificação mais próximo for igual ou superior a seis desvios-padrão (σ). Na prática, por maior que seja a atenção dispensada ao processo, a média da distribuição de probabilidades da CTQ pode deslocar em até 1,5σ do valor-alvo, que ainda assim o processo será considerado Seis Sigma. Então existe um intervalo de 4,5 a 6σ, no qual o processo pode variar sem que perca o nível de qualidade considerado de classe mundial . Desta forma, neste trabalho, buscou-se estabelecer recomendações para o planejamento de gráficos de controle de Shewhart ̅ e R para o monitoramento de processos Seis Sigma. Para tanto, estabeleceu-se um desempenho de referência no qual se admitiu a probabilidade do alarme falso conjunto igual ou inferior a 0,01; e a probabilidade do alarme verdadeiro conjunto crescendo de acordo com a redução do nível Sigma do processo, passando de 0 em processos 6σ para 0,10 naqueles 5σ, atingindo 0,90 em processos 4,5σ até atingir a unidade para processos 3σ e inferiores. Nesse sentido, investigou-se planejamentos com combinações entre n = 2, 3, 4 e 5 e k = 2,5, 2,6, 2,7, 2,8, 2,9 e 3,0. Identificou-se que o par de gráficos em questão apresentou bom desempenho quando o processo esteve sob efeito somente do deslocamento da média e perdeu desempenho à medida que ocorreu o aumento da variação como única perturbação ou quando as duas anomalias estiveram atuando. Foi possível identificar que o deslocamento da média é o problema mais observado, a ocorrência simultânea das duas anomalias é menos frequente e a presença exclusiva do aumento da variação é rara. Logo, recomendou-se o planejamento com n = 5 e k = 2,9, para o monitoramento de processos Seis Sigma Práticos (isto é, com nível sigma entre 4,5 e 6σ), que apresentou bom desempenho apenas quando o processo esteve principalmente sob efeito do deslocamento da média. Portanto, é provável que o nível de qualidade dos processos caia sem que os gráficos de controle em questão sinalizem a perda da qualidade em função do aumento da variação, com ou sem a presença do deslocamento da média.
|
3 |
[pt] EFEITO DA ESTIMAÇÃO DOS PARÂMETROS SOBRE O DESEMPENHO CONJUNTO DOS GRÁFICOS DE CONTROLE DE X-BARRA E S / [en] EFFECT OF PARAMETER ESTIMATION ON THE JOINT PERFORMANCE OF THE X-BAR AND S CHARTSLORENA DRUMOND LOUREIRO VIEIRA 09 July 2020 (has links)
[pt] A probabilidade de alarme falso, alfa, dos gráficos de controle de processos depende dos seus limites de controle, que, por sua vez, dependem de estimativas dos parâmetros do processo. Esta tese apresenta inicialmente uma revisão dos principais trabalhos sobre o efeito dos erros de estimação dos parâmetros do processo sobre alfa quando se utiliza o gráfico de X e S individualmente e em conjunto. O desempenho dos gráficos é medido através de medidas de desempenho (número médio de amostras até o sinal, taxa de alarme falso, distribuição do número de amostras até o sinal, que, em geral, são variáveis aleatórias, função dos erros de estimação. Pesquisas recentes têm focado nas propriedades da distribuição condicional do número de amostras até o sinal, ou ainda, nas propriedades da distribuição da taxa de alarme-falso
condicional. Esta tese adota esta abordagem condicional e analisa o efeito da estimação dos parâmetros do processo no desempenho conjunto dos gráficos de X e S em dois casos: Caso KU (Média conhecida – Variância desconhecida) e Caso UU (Média desconhecida – Variância desconhecida). A quase totalidade
dos trabalhos anteriores considerou apenas um gráfico, isoladamente; sobre efeito da estimação dos parâmetros sobre o desempenho conjunto conhecemos apenas um trabalho, sobre gráficos de X e R, mas nenhum sobre gráficos de X e S. Os resultados da análise mostram que o desempenho dos gráficos pode
ser muito afetado pela estimação de parâmetros e que o número de amostras iniciais requerido para garantir um desempenho desejado é muito maior que os números tradicionalmente recomendados na literatura normativa de controle estatístico de processo (livros texto e manuais). Esse número é, porém, menor que o máximo entre os números requeridos para os gráficos de X e de S individualmente. Questões a serem investigadas como desdobramento dessa pesquisa são também indicadas nas Considerações Finais e Recomendações. / [en] The false-alarm rate of control charts, alpha, depends on the control limits calculated, which depend, in turn, on the estimated process parameters. This dissertation initially presents a review of the main research articles about the effect of the estimation errors of the process parameters upon alpha when X and S charts are used separately and together. The charts performance is evaluated through performance measures (average run-length, false-alarm rate, run-length distribution, etc), which are, in general, random variables, function of the estimation errors. Recent researches focused on the properties of the conditional run-length, or still (in the case of Shewhart charts) on the properties of the conditional false-alarm rate distribution. This dissertation adopts this conditional approach and investigates the effect of parameter estimation on the joint behavior of X and S charts in two cases: KU Case (Known mean – Unknown variance) and UU Case (Unknown mean - Unknown variance). Almost all previous works considered just only one chart separately – just only one joint performance work is known by the author, one about the effect of the estimation errors of the process parameters upon X e R joint performance. The results show that the charts performance can be severely affected by the parameter estimation and the number of initial samples required to ensure the desirable performance is greater than the numbers of initial samples recommended by traditional statistical process control reference texts (books and manuals). This number is, however, smaller than the maximum between the numbers of samples required by the X and the S charts separately. Additional issues for follow-up research are recommended in the concluding section.
|
Page generated in 0.0456 seconds