Spelling suggestions: "subject:"alginate leads"" "subject:"alginate heads""
1 |
Chondrocytes Encapsulation In Hydrogel Beads and Their Response to Polyphosphate IncorporationViera Rey, Denis Fabricio 06 July 2020 (has links)
In Canada, one in five people suffers from arthritis, of which the most common type is osteoarthritis (OA). OA is a group of joint diseases that cause pain and loss of range of motion and for which there is currently no cure. OA can be caused by numerous factors such as aging, genetics, environmental elements, and abnormal joint biomechanics (e.g., injury, obesity). These diseases are degenerative and lead to the progressive breakdown of joint cartilage, as well as changes in the underlying bone and other tissues of the joint over a period of years to decades. Articular cartilage incorporates a single type of resident cells, termed chondrocyte cells. These cells are entrapped within a dense extracellular matrix that limits their ability to proliferate and migrate to a site of injury, while the absence of blood vessels in the cartilage, amongst other factors, hinders the ability of progenitor cells to reach the site of injury, contributing to a limited capacity for intrinsic regeneration of the damaged tissue following an injury. As such, efforts to develop tissue engineering strategies that combine a biomaterial with bioactive signals to induce cells with the chondrogenic potential to regenerate tissue have been pursued actively. In this thesis, we investigate the potential of one such cartilage tissue engineering approach, whereby chondrocytes are encapsulated with alginate hydrogels incorporating inorganic polyphosphate (polyP), a promising chondrogenic signal. The driving hypothesis of the work was that polyanionic polyP would crosslink within the alginate hydrogel meshwork by ionic bonds with the multivalent cations used to form the hydrogel. Initial efforts focussed on optimizing the sterile chondrocyte encapsulation protocol for alginate beads, chondrocyte culture conditions to reduce proliferation – a response that is associated with dedifferentiation and a pathological state – and protocol for the incorporation of polyP in alginate bead when using calcium as a cationic crosslinker. We observed that polyP release from the calcium-alginate bead exhibited an important burst release to nearly 80% of the initial polyP loading within 24 hours of incubation in the culture medium. Increasing the alginate concentration led to approximately a 2.5-fold increase in polyP retention following the burst release. Subsequent incubation showed a more controlled release for at least 1 week. Efforts to reduce hydrogel swelling and increase its stability by substituting Ca2+ by Sr2+ as a crosslinker did not reduce the release rate during the burst release phase, nor did it increase the polyP retention following this initial stage. Other divalent cations including Mg2+ and Co2+, and pre-loading the polyP-alginate solution with a small concentration of Ca2+ did not impact the release profile either. Chondrocytes encapsulated in calcium- and strontium-alginate beads showed decreased DNA content and increased sulfated glycosaminoglycan accumulation at 1 week when polyP was incorporated in the beads compared to controls without polyP; however, this effect was lost at longer time points. These results suggest that this new material may find applications as a vehicle for the short-term delivery of polyP in joints and other tissues. Further efforts to improve the polyP release profile from alginate beads lead to promising results with the use of polyethylenimine (PEI) as a cationic tethering molecule between polyP and alginate. This thesis aims to generate novel biomaterials that can be used to stimulate cartilage tissue regeneration and to eventually develop a treatment strategy for OA. The work presented here will serve as a basis for continued efforts to ensure the prolonged retention of exogenous polyP into the joint.
|
2 |
Biofilm formation and antibiotic resistance on alginate beads of Staphylococcus aureus and other health care associated bacterial speciesWilkinson, Anita Jean January 2016 (has links)
Health Care Associated Infections (HCAIs) are a concern especially in regards to antibiotic resistance and effective treatments. Staphylococcus aureus is often the main focus for eradication and prevention procedures, however, other bacterial species are also problematic. These include Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus epidermidis amongst others. Chronic infections caused by these bacteria are often biofilm related, and include dental caries, otitis media, osteomyelitis, burns & chronic wounds, and device related & prosthetic joint infections. Prosthetic joints and indwelling devices, such as catheters, are a prime environment on which biofilms can develop. This thesis aims to look at biofilms, investigating how they are established, the development of resistance against individual antibiotics and the antibiotic concentrations required to reduce biofilm load. A novel biofilm system – the alginate bead method will be used for these experiments, The alginate bead method was developed by a previous student in the Gallagher Laboratory, due to a need to have a reliable, robust and inexpensive technique to examine formation of biofilms and antibiotic resistance. There are devices and assays available, such as the Calgary Biofilm Device, which are extensively used for these purposes. However, the cost is prohibitive. This thesis found that the development of biofilms occurs much earlier than expected, with stable, fixed formation after just four hours of growth. Depending upon the antibiotic, resistance can develop within the first two hours of growth and thereafter steadily increases. By 24 hours the biofilms are fully resistant to all the tested antibiotics. In mixed species biofilms, the two species act synergistically protecting each other against the antibiotics, resulting in a much higher antibiotic concentration required. Common antibiotics used to treat staphylococcal infections are often combined to enhance their destructive effect and prevent the development of resistance. The effects of these antibiotics, when combined was explored. Biofilm resistance against gentamicin, one of the most common antibiotics used to treat staphylococcal infections develops quickly. However, when combined with other antibiotics gentamicin resistance is delayed. As antibiotic concentrations have to be extremely high in order to have any effect on established biofilms, alternative methods need to be investigated. Any alternative approaches would be employed in conjunction with conventional therapies preventing stable biofilm formation and disrupting established biofilms. Such methods may include sugar metabolites, enzymatic disruption, D-amino acids and activation of the quorum sensing system. The main conclusion which can be taken from this work are that firstly the alginate bead method of a viable, suitable alternative to the Calgary Biofilm Device and supports biofilm formation and testing. Secondly that biofilms form and are resistant to antibiotics much earlier than expected, and extreme concentrations of antibiotics are required to have an effect. Thus the inclusion of alternative methods which disrupt biofilms would be beneficial to clinical practice. However, the alternative methods investigated within this thesis (D-amino acids and sugar metabolites) failed to show any inhibition of biofilms. There are other possible choices which would need to be investigated.
|
3 |
Alginate Beads: A Promising Vector for BMCsAlsaggaf, Ahmed A. 17 May 2022 (has links)
Coral bleaching is a worldwide result of climate change that is affecting the marine ecosystems greatly. Methods to help solve the issue have been previously explored and Beneficial Microorganisms for Corals (BMCs) have been proven to help mitigate coral bleaching in laboratory trials. In their efforts to test its effectiveness on the field, scientists have found that it would be beneficial to have a constant, biocompatible, source of BMCs. We have tested Calcium Alginate microspheres, what we call Alginate Beads, in terms of release rate and cell viability to determine if they are fit to be used as vectors for the BMC consortia. By placing the Beads in two different temperatures representing winter and summer temperatures in the Red Sea in agitation we were able to understand their dynamics more clearly. By using Flow Cytometry, Colony Forming Units, and microscopy techniques we were able to see that Alginate Beads incorporate bacteria into their matrix and keep them viable for up to two weeks. We also observed that the Beads release more bacterial cells at higher temperatures compared to lower temperatures. This suggests that when used in the field, Alginate Beads are able to sustain the bacteria for a prolonged time period and it will release bacteria at a higher rate in warmer temperatures potentially either season or region-wise. Hence, we believe that Alginate Beads could be suitable as vectors for field research and should be explored further.
|
4 |
Vinification continue avec levures immobilisées : analyse du système et conception du réacteur industriel / Continuous wine-making with immobilized yeast cells : system analysis and industrial reactor designKassim Houssenaly, Caroline 27 February 2012 (has links)
Un nouveau procédé intensifié de vinification continue avec un mélange de levures S.cerevisiae et Sch.pombe immobilisées dans des billes d’alginate est proposé. A l’échelle laboratoire, l’étude de la teneur en billes et de la configuration du réacteur conduit à l’obtention d’un réacteur de type lit fixe permettant une production de vin en 35 heures. Des validations du procédé aux échelles pilote (170 L) puis industrielle (120 hL) montrent que, en cave, du vin de qualité semblable au témoin est produit en 2 à 3 jours. Une analyse du comportement du réacteur a identifié des raisons de pertes de performances liées à l’hydrodynamique lors du changement d’échelle ainsi que des axes améliorations possibles. Ce procédé permet d’obtenir un vin de qualité maitrisée et un gain de temps de plusieurs semaines / From a batch to another, produced wines are usually different because of the different alcoholic and malolactic fermentation courses. To blend wines quality and continue wine production industrialization, a new continuous process, using Ca-alginate immobilized yeast cells, was developed for red wine-making. Working with a blending of S.cerevisiae and Sch.pombe allowed the regrouping of the alcoholic and malolactic fermentations in a unique step. After testing different reactor set-ups at lab scale, the selected process, a vertical bed reactor, was used in real wine-making conditions, firstly in a pilot reactor (170 L) and then in an industrial one (120 hL). The results showed that continuous wine-making was possible in 2 to 3 days. The wine presented nearly the same sensory profile compared to a classical one. Thanks to the analysis of the reactor behaviour, we were able to explain the efficiency losses linked to the hydrodynamic, observed during the scale-up. This new intensified process enables to obtain a wine with a controlled quality and to save several weeks of production time
|
5 |
Studium možných aplikací polymeru kyseliny glutamové / Study on potential applications of glutamic acid polymerČangelová, Katarína January 2019 (has links)
The subject of the thesis is study of possible applications of isoform of glutamic acid polymer (-PGA). The theoretical part is focused on the properties of this biopolymer and potential applications in various areas. Producers and mechanisms of biosynthesis are also mentioned. In the experimental part, the polymer was firstly characterised by following methods: FT-IR spectroscopy, TGA, DSC and SEC-MALS. Its isoelectric point, antimicrobial activity and solubility in various solvents were also determined. The biopolymer was also precipitated by divalent cations and its interaction with oppositely charged CTAB surfactant was studied. The main experimental study was researching the effect of -PGA on viability of Saccharomyces cerevisiae and Lactobacillus rhamnosus under stress conditions by flow cytometry. The performed stresses included ethanol exposure, high temperature and freezing stress, in which its effects were compared to conventional cryoprotectants. The cells of the mentioned microorganisms were also stressed osmotically and exposed to model gastrointestinal juices - gastric, pancreatic and bile. The protective effects of -PGA on the cells were recorded in ethanol stress on Lactobacillus rhamnosus. Its excellent cryoprotection properties were confirmed and its protective effect of gastric juice exposure on Saccharomyces cerevisiae cells was also observed. At the end of the experimental part, -PGA/alginate beads suitable for encapsulation of probiotic bacteria and -PGA/chitosan nanoparticles for encapsulation of biologically active substances.
|
6 |
Biochemical processes for Balsamic-styled vinegar engineeringHutchinson, Ucrecia Faith January 2019 (has links)
Thesis (PhD (Chemical Engineering))--Cape Peninsula University of Technology, 2019 / The South African wine industry is constantly facing several challenges which affect the quality of wine, the local/global demand and consequently the revenue generated. These challenges include the ongoing drought, bush fires, climate change and several liquor amendment bills aimed at reducing alcohol consumption and alcohol outlets in South Africa. It is therefore critical for the wine industry to expand and find alternative ways in which sub-standard or surplus wine grapes can be used to prevent income losses and increase employment opportunities. Traditional Balsamic Vinegar (TBV) is a geographically and legislative protected product produced only in a small region in Italy. However, the methodology can be used to produce similar vinegars in other regions. Balsamic-styled vinegar (BSV), as defined in this thesis, is a vinegar produced by partially following the methods of TBV while applying process augmentation techniques. Balsamic-styled vinegar is proposed to be a suitable product of sub-standard quality or surplus wine grapes in South Africa. However, the production of BSV necessitates the use of cooked (high sugar) grape must which is a less favourable environment to the microorganisms used during fermentation. Factors that negatively affect the survival of the microorganisms include low water activity due to the cooking, high osmotic pressure and high acidity. To counteract these effects, methods to improve the survival of the non-Saccharomyces yeasts and acetic acid bacteria used are essential.
The primary aim of this study was to investigate several BSV process augmentation techniques such as, aeration, agitation, cell immobilization, immobilized cell reusability and oxygen mass transfer kinetics in order to improve the performance of the microbial consortium used during BSV production.
The work for this study was divided into four (4) phases. For all the phases a microbial consortium consisting of non-Saccharomyces yeasts (n=5) and acetic acid bacteria (n=5) was used. Inoculation of the yeast and bacteria occurred simultaneously. The 1st phase of the study entailed evaluating the effect of cells immobilized by gel entrapment in Ca-alginate beads alongside with free-floating cells (FFC) during the production of BSV. Two Ca-alginate bead sizes were tested i.e. small (4.5 mm) and large (8.5 mm) beads to evaluate the effects of surface area or bead size on the overall acetification rates. Ca-alginate beads and FFC fermentations were also evaluated under static and agitated (135 rpm) conditions. The 2nd phase of the study involved studying the cell adsorption technique for cell immobilization which was carried-out using corncobs (CC) and oak wood chips (OWC), while comparing to FFC fermentations. At this phase of the study, other vinegar bioreactor parameters such as agitation and aeration were studied in contrast to static fermentations. One agitation setting (135 rpm) and two aeration settings were tested i.e. high (0.3 vvm min−1) and low (0.15 vvm min−1) aeration conditions. Furthermore, to assess the variations in cell adsorption capabilities among individual yeast and AAB cells, the quantification of cells adsorbed on CC and OWC prior- and post-fermentation was conducted using the dry cell weight method.
The 3rd phase of the study entailed evaluating the reusability abilities of all the matrices (small Ca-alginate beads, CC and OWC) for successive fermentations. The immobilized cells were evaluated for reusability on two cycles of fermentation under static conditions. Furthermore, the matrices used for cell immobilization were further analysed for structure integrity by scanning electron microscopy (SEM) before and after the 1st cycle of fermentations. The 3rd phase of the study also involved the sensorial (aroma and taste) evaluations of the BSV’s obtained from the 1st cycle of fermentation in order to understand the sensorial effects of the Ca-alginate beads, CC and OWC on the final BSV. The 4th phase of the study investigated oxygen mass transfer kinetics during non-aerated and aerated BSV fermentation. The dynamic method was used to generate several dissolved oxygen profiles at different stages of the fermentation. Consequently, the data obtained from the dynamic method was used to compute several oxygen mass transfer parameters, these include oxygen uptake rate ( 𝑟𝑟𝑂𝑂2 ), the stoichiometric coefficient of oxygen consumption vs acid yield (𝑌𝑌𝑂𝑂/𝐴𝐴), the oxygen transfer rate (𝑁𝑁𝑂𝑂2 ), and the volumetric mass transfer coefficients (𝐾𝐾𝐿𝐿𝑎𝑎). During all the phases of the study samples were extracted on weekly intervals to evaluate pH, sugar, salinity, alcohol and total acidity using several analytical instruments. The 4th phase of the study involved additional analytical tools, i.e. an oxygen µsensor to evaluate dissolved oxygen and the ‘Speedy breedy’ to measure the respiratory activity of the microbial consortium used during fermentation.
The data obtained from the 1st phase of the study demonstrated that smaller Ca-alginate beads resulted in higher (4.0 g L-1 day−1) acetification rates compared to larger (3.0 g L-1 day−1) beads, while freely suspended cells resulted in the lowest (0.6 g L-1 day−1) acetification rates. The results showed that the surface area of the beads had a substantial impact on the acetification rates when gel entrapped cells were used for BSV fermentation. The 2nd phase results showed high acetification rates (2.7 g L-1 day−1) for cells immobilized on CC in contrast to cells immobilized on OWC and FFC, which resulted in similar and lower acetification rates. Agitated fermentations were unsuccessful for all the treatments (CC, OWC and FFC) studied. Agitation was therefore assumed to have promoted cell shear stress causing insufficient acetification during fermentations. Low aerated fermentations resulted in better acetification rates between 1.45–1.56 g L-1 day−1 for CC, OWC and FFC. At a higher aeration setting, only free-floating cells were able to complete fermentations with an acetification rate of 1.2 g L-1 day−1. Furthermore, the adsorption competence data showed successful adsorption on CC and OWC for both yeasts and AAB with variations in adsorption efficiencies, whereby OWC displayed a lower cell adsorption capability compared to CC. On the other hand, OWC were less efficient adsorbents due to their smooth surface, while the rough surface and porosity of CC led to improved adsorption and, therefore, enhanced acetification rates. The 3rd phase results showed a substantial decline in acetification rates on the 2nd cycle of fermentations when cells immobilized on CC and OWC were reused. While cells entrapped in Ca-alginate beads were able to complete the 2nd cycle of fermentations at reduced acetification rates compared to the 1st cycle of fermentations. The sensory results showed positive ratings for BSV’s produced using cells immobilized in Ca-alginate beads and CC. However, BSV’s produced using OWC treatments were neither ‘liked nor disliked’ by the judges. The SEM imaging results further showed a substantial loss of structural integrity for Ca-alginate beads after the 1st cycle fermentations, with minor changes in structural integrity of CC being observed after the 1st cycle fermentations. OWC displayed the same morphological structure before and after the 1st cycle fermentations which was attributed to their robustness. Although Ca-alginate beads showed a loss in structural integrity, it was still assumed that Ca-alginate beads provided better protection against the harsh environmental conditions in contrast to CC and OWC adsorbents due to the acetification rates obtained on both cycles. The 4th phase data obtained from the computations showed that non-aerated fermentations had a higher 𝑌𝑌𝑂𝑂/𝐴𝐴, 𝑟𝑟𝑂𝑂2 , 𝑁𝑁𝑂𝑂2 and a higher 𝐾𝐾𝐿𝐿𝑎𝑎 . It was clear that aerated fermentations had a lower aeration capacity due to an inappropriate aeration system design and an inappropriate fermentor. Consequently, aeration led to several detrimental biochemical changes in the fermentation medium thus affecting 𝐾𝐾𝐿𝐿𝑎𝑎 and several oxygen mass transfer parameters which serve as a driving force.
Overall, it was concluded that the best method for BSV production is the use of cells entrapped in small alginate beads or cells adsorbed on CC under static and non-aerated fermentations. This conclusion was based on several factors such as cell affinity/cell protection, acetification rates, fermentation period and sensorial contributions. However, cells entrapped in Ca-alginate beads had the highest acetification rates. The oxygen mass transfer computations demonstrated a high 𝐾𝐾𝐿𝐿𝑎𝑎 when Ca-alginate beads were used under static-non-aerated conditions compared to fermentations treated with CC. Therefore, a fermentor with a high aeration capacity needs to be designed to best suit the two BSV production systems (Ca-alginate beads and CC). It is also crucial to develop methods which can increase the robustness of Ca-alginate beads in order to improve cell retention and reduce the loss of structural integrity for subsequent cycles of fermentation. Studies to define parameters used for upscaling the BSV production process for large scale productions are also crucial.
|
7 |
Physical and Biological Properties of Synthetic Polycations in Alginate CapsulesKleinberger, Rachelle 04 1900 (has links)
The use of cell transplantation to treat enzyme deficiency disorders is limited by
the immune response targeted against foreign tissue or the use of life-long
immunosuppressants. Hiding cells from the immune system in an encapsulation device is
promising. Cells encapsulated within an anionic calcium alginate hydrogel bead are
protected through a semi-permeable membrane formed by polycation, poly-L-lysine
(PLL). A final layer of alginate is added to hide the cationic PLL surface but this has
proved to be difficult creating capsules which are prone to fibrotic overgrowth, blocking
exchange of nutrients, waste and therapeutic enzymes through the capsule. For long term
applications these capsules need to be both biocompatible and mechanically robust.
This thesis aims to address the biocompatibility issue of high cationic surface
charge by synthesizing polycations of reduced charge using N-(3-
aminopropyl)methacrylamide hydrochloride (APM) and N-(2-
hydroxypropyl)methacrylamide (HPM) and study the associated mechanical properties of
the capsules using micropipette aspiration. Micropipette aspiration was applied and
validated for alginate based capsules (gel and liquid core) to quantify stiffness.
Varying ratios of APM were used to control the overall charge of the polycations
formed while HPM was incorporated as a neutral, hydrophilic, nonfouling comonomer.
The molecular weight (MW) was controlled by using reversible addition-fragmentation
chain transfer (RAFT) polymerization. The biocompatibility of these polymers was tested
by cell adhesion and proliferation of 3T3 fibroblasts onto APM/HPM copolymer
functionalized surfaces and by solution toxicity against C2C12 myoblasts. The ability for the APM/HPM copolymers to bind to alginate and form capsules was also assessed, along
with the integrity and stiffness of the capsule membrane with or without additional
covalent cross-linking by reactive polyanion, poly(methacrylic acid-co-2-vinyl-4,4-
dimethylazlactone) (PMV60).
Thermo-responsive block copolymers of N-isopropylacrylamide (NIPAM) and 2-
hydroxyethylacrylamide (HEA) were also synthesized as potential drug delivery
nanoparticles, showing control over micelle morphology with varying NIPAM to HEA
ratios. / Thesis / Doctor of Science (PhD) / The treatment of enzyme deficiency disorders by cell transplantation is limited by
the immune attack of foreign tissue in absence of immunosuppressants. Cells protected in
an encapsulation device has shown promise. Poly-L-lysine, a widely used membrane
material in these protective capsules, binds to the anionic gel entrapping living cells
because it is highly cationic. The high cationic charge is difficult to hide causing the
immune system to build tissue around the capsule, preventing the encapsulated cells from
exchanging nutrients and therapeutic enzymes. This thesis aims to replace poly-L-lysine
by synthesizing a series of more biocompatible materials of decreasing cationic charge.
These materials were studied for the ability to support tissue growth and form stable
capsules. The membrane strength was measured using an aspiration method validated for
these types of capsules. Reducing the cationic charge of the materials increased the
biocompatibility of the capsule membrane but also made for weaker membranes.
|
Page generated in 0.0346 seconds