• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of polycations on glomerular cells in vitro

Broestl, Jayne Alberta January 1992 (has links)
No description available.
2

Study Of Polyelectrolyte Complex Formation Between Carboxymethylcellulose And Vinylic Polycations : The Effect Of Structural Parameters Of The Polycations

Vishalakshi, B 09 1900 (has links) (PDF)
No description available.
3

Inverted Zintl phases and ions - A search for new electronic properties.

Lindsjö, Martin January 2002 (has links)
No description available.
4

Inverted Zintl phases and ions - A search for new electronic properties.

Lindsjö, Martin January 2002 (has links)
NR 20140805
5

Synthesis of New lonic Functional Polymers by Free Radical Polymerization via the RAFT Process

Baussard, Jean-François 26 January 2004 (has links)
Within the emerging methods of controlled free radical polymerization, the Reversible Addition-Fragmentation chain Transfer (RAFT) process has been recently established as a powerful technique to synthesize standard polymers with controlled characteristics (narrow polydispersity and predictable molar masses). This method is now employed to synthesize well-defined, reactive precursor polymers that are subsequently converted into speciality polymers such as fluorescent-labeled polycations. Those are suitable for Electrostatic Self-Assembly (ESA). The observation of the Förster Resonance Energy Transfer (FRET) in such films is established, contributing to the understanding of the self-organization during thin film growth. The RAFT process using Benzyl Dithiobenzoate (BDTB) is shown to enable the control of the free radical polymerization of vinylbenzyl chloride (VBC). The high tolerance of the method to functional groups allows the preparation of such reactive polymers with narrow polydispersities and predictable molar masses. The well-defined precursors are easily converted, for instance, to polycations. Also they are easily functionalized by fluorophores, here derived from coumarin and perylene. The fluorophores, as pendent side chains, served as label to investigate the alternating deposition process, while the influence of molecular variations on the self-assembly can be systematized. Furthermore, when using complementary fluorophores, Fluorescence Resonance Energy Transfer (FRET) studies in organized media become possible. The alternating deposition cycles are followed by UV-Vis spectroscopy, ellipsometry, and X-Ray reflectivity. Regular growth is observed for three complementarily labeled polycations. Noteworthy, fluorescence and UV-Vis studies reveal the formation of large fluorescent dye aggregates for one coumarin and for the perylene derivative in the ESA multilayers. When these polycations are used in mixed thin films, Förster Resonance Energy Transfer (FRET) between fluorophores is observed. The non-radiative nature of the different energy transfer was confirmed by fluorescence decay time measurements/ Parmi les récentes méthodes pour contrôler la polymérisation radicalaire, le procédé RAFT (Reversible Addition-Fragmentation chain Transfer) a été récemment établi et s'impose comme une méthode performante pour la synthèse de polymères standards possédant des caractéristiques contrôlées (faibles polydispersités et masses molaires prédictibles). Cette méthode est désormais utilisée pour la synthèse de précurseurs réactifs bien définis qui sont par la suite convertis en polymères spécialisés, par exemple en polycations marqués a l'aide de sondes fluorescentes. Ces polycations peuvent être ensuite auto-assemblés électrostatiquement afin d'élaborer des films minces. Le phénomène de transfert de fluorescence (Förster Resonance Energy Transfer –FRET-) dans de tels films a été établi, contribuant par là-même à une meilleure compréhension du phénomène d'auto-organisation durant la croissance des films. Le procédé RAFT, utilisant le dithiobenzoate de benzyle (BDTB), a démontré sa capacité à contrôler la polymérisation radicalaire du chlorométhlstyrène (VBC). La tolérance de cette méthode vis à vis des groupes fonctionnels permet la synthèse de polymères réactifs possédant de faibles polydispersités et des masses molaires prédictibles. Les précurseurs ainsi définis sont facilement convertis, en polycations par exemple. Ils sont tout aussi facilement fonctionnalisés par des fluorophores dérivés de la coumarine ou du pérylène. Les fluorophores en tant que chaînes pendantes servent de marqueurs pour étudier le processus de dépôts alternés, alors que l'influence des variations au niveau moléculaire peut être systématisée. De plus, en utilisant des fluorophores complémentaires, il devient possible de mener des études sur le transfert de fluorescence (FRET) au sein de milieux organisés. Les cycles de dépôts alternés ont été suivis par spectroscopie UV-Vis, éllipsométrie et reflexion des rayons X. Une croissance régulière est observée dans le cas des trois polycations marqués. Il convient de noter que les études UV-Vis et de fluorescence révèlent la formation de larges aggrégats de fluorophores au sein des multicouches, dans le cas d'une coumarine et du dérivé de pérylène. Lorsque les polycations complémentaires sont utilisés dans des films minces mixtes, le FRET est observé. La nature radiative ou non-radiative du processus de transfert d'énergie a été confirmée par des mesures de déclin de fluorescence.
6

Bismutsubchloride mit anionischen Clustern und Bismutpolykationen - Synthese, Charakterisierung und Kristallstrukturen

Hampel, Silke 10 April 2005 (has links) (PDF)
Im Mittelpunkt dieser Arbeit standen die Darstellung und Charakterisierung ternärer Bismutsubchloride unter Einbau von Übergangsmetallen der 8., 9. und 10. Gruppe. Durch Vorlage eines hohen Chloranteils in der Synthese wurde die "chemische Schere" der Oxidation so stark wirksam, dass in den Verbindungen die gewünschten voneinander isolierten Cluster aus Metallatomen vorlagen. Die Verbindungen Bi12PtCl12, Bi12-xRhCl13-x, Bi12-xIrCl13-x (x < 1) und Bi6,67PtCl12 wurden als Pulver und als Kristalle durch Festkörperreaktionen bei 1273 K in Quarzglasampullen hergestellt. Die schwarz glänzenden, würfelförmigen Kristalle sind luftstabil, in verdünnten Mineralsäuren und in organischen Lösungsmitteln beständig. Die Zusammensetzungen wurden mit EDX-Analysen und Röntgenbeugung am Einkristall bestimmt. Zur weiteren Charakterisierung wurden quantenchemische Rechnungen, ramanspektroskopische Untersuchungen, Messungen der magnetischen Suszeptibilität und der elektrischen Leitfähigkeit durchgeführt. Kristalle der Verbindung Bi12PtCl12 täuschen ein rhomboedrisches Kristallsystem vor, die Struktur konnte in der Raumgruppe P 1 als nahezu perfekter Inversionszwilling eines Achsendrillings gelöst werden. Auf den Eckplätzen der pseudorhomboedrischen Elementarzelle befinden sich [PtBi6Cl12]2- -Cluster und in der Mitte ein (Bi6)2+ -Polykation. Dieses (Bi6)2+ -Polykation in Form eines geöffneten Oktaeders bestätigt experimentell Vorhersagen von Kuznetsov et al. Nach den Regeln von Wade ist das Polykation mit 2 x 6 + 4 = 16 Gerüstelektronen als nido-Cluster zu verstehen. Die Schwerpunkte der Anionen und Kationen fügen sich zu einer dem CsCl-Typ analogen Anordnung zusammen. Mit einer vollständigen Besetzung aller Bismutlagen in der Mitte der Elementarzelle kann Bi12PtCl12 eine Schlüsselrolle zugeordnet werden, die sozusagen den Prototyp für diesen Strukturtyp darstellt. Die weiteren Verbindungen stellen unterbesetzte Varianten dar und können von Bi12PtCl12 abgeleitet werden. Im Verlauf der Untersuchungen zu den ternären Subchloriden in den Systemen wurden wenige Kristalle der binären Verbindung Bi7Cl10 erhalten. Die Tatsache, dass es sich um eine neue binäre Phase im recht stark untersuchten Gebiet Bismut-Chlor handelte führte zu einer neuerlichen, systematischen Überprüfung des Systems Bi/Cl. Mittels thermischer Analysen wurde das Zustandsdiagramm Bi/BiCl3 präzisiert. Bi7Cl10 zersetzt sich bereits bei 190 °C peritektoid in Bi6Cl7 und BiCl3 Bi7Cl10(s) = Bi6Cl7(s) + BiCl3(g). Das Zustandsbarogramm des binären Systems wurde über Gesamtdruckmessungen im Membran-Nullmanometer erstmalig bestimmt. Aus den Druckfunktionen der Bismutchloride sowie aus Messungen der Molwärme von Bi6Cl7 wurden die thermodynamischen Standarddaten abgeleitet. Unter Verwendung dieser Daten wurden thermodynamische Modellierungen der Festkörper-Gasphasen-Gleichgewichte durchgeführt, mit deren Hilfe die Synthese von Bi7Cl10 optimiert werden konnte. Die phasenreine Gasphasenabscheidung von Bi7Cl10 ist aufgrund der Kondensation der dominierenden Gasphasenspezies BiCl und BiCl3 im Existenzbereich der Verbindung oberhalb des Zersetzungspunktes (190 °C) nicht möglich. Im Existenzgebiet von Bi7Cl10 kommt der Transport dann wegen der resultierenden Partialdrücke unmittelbar zum Erliegen. Aus Röntgenbeugungsuntersuchungen an Einkristallen geht hervor, dass Bi7Cl10 bei Raumtemperatur in der tetragonalen Raumgruppe I 41/a c d mit a = 28,235(3) und c = 39,950(4) Å kristallisiert (Z = 64). Analog zu Bi6Cl7 = ((Bi9)5+)[(Bi3Cl14)5-] kann Bi7Cl10 unter Verdopplung der Summenformel als ((Bi9)5+)[(Bi5Cl20)5-] formuliert werden. In der Kristallstruktur sind Polykationen (Bi9)5+, welche die Gestalt zweifach überkappter trigonaler Prismen haben, in ein Chlorobismutat(III)-Raumnetzwerk [(Bi5Cl20)5-] eingebettet. Die Polykationen und das Anionennetzwerk sind deutlich voneinander separiert.
7

Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

Ahmed, Ejaz 19 December 2011 (has links) (PDF)
Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 in room-temperature or lower temperature synthesis, a soft and sustainable chemical approach has been developed, employing a Lewis-acidic IL [bmim]Cl/AlCl3. This new alternative reaction medium has proven to be an excellent solvent system for the single–step synthesis of main group polycations and transition metal clusters. X-ray diffraction and Raman spectroscopy have been used for the structural characterization of the isolated compounds. Physical properties and quantum chemical calculations of some of the compounds have also been carried out.
8

Synthesis of Metal-Rich Compounds of Group 15 Elements in Lewis-Acidic Ionic Liquids

Groh, Matthias Friedrich 12 January 2017 (has links) (PDF)
Chemical synthesis of materials is facing enormous challenges at the present time. The necessary transition toward more sustainable economic processes requires new materials as well as optimized production of well-established materials. However, inorganic materials (e.g., ceramics or alloys) are typically produced industrially by high-temperature processes at up to 2000 °C. A relatively new approach for inorganic synthesis is based on so-called ionic liquids. Ionic liquids (ILs) — often defined as salts with melting points below 100 °C[1] — are usually composed of sterically demanding organic cations and (often) polyatomic anions, which can be selected in order to tune the properties of the IL. Owing to the distinctive physicochemical properties of ILs (e.g., wide liquidus range, high redox and thermal stability, (usually) negligible vapor pressure, tunable polarity), they have gained interest for a wide range of applications. Among the numerous inorganic materials accessible in ILs have been remarkable examples, especially in main-group element chemistry. For instance, a new metastable modification of germanium in the clathrate-II structure[2] or the largest known naked, main-group element cluster [Sn36Ge24Se132]24– (“Zeoball”).[3] The introduction of Lewis-acidic ILs has enhanced the convenience of polycation syntheses and enabled substitution of carcinogenic or toxic substances like benzene, SO2, or AsF5.[4] A considerable number of polycations of group 15 or 16 elements has been synthesized in ILs. The utilization of an IL as reaction medium can be decisive for the composition, structure, and physical properties of the (polycationic) reaction product.[5] In order to broaden the knowledge on synthesis techniques for inorganic materials near ambient temperature based on ILs, this thesis aimed at two goals: • Explorative synthesis of new inorganic compounds in ILs • Elucidating the influence of ILs on product formation For these two goals, metal-rich (polycationic) compounds of group 15 were chosen as promising chemical system, owing to the effectiveness of alkylimidazolium-based Lewis-acidic ILs for the synthesis of this class of compounds. A variety of new polycationic compounds has been successfully synthesized in Lewis-acidic ILs based on 1-n-butyl-3-methylimidazolium (or 1-ethy-3-methylimidazolium) halides and halogenido-aluminates. Determination of the crystal structures by single-crystal X-ray diffraction enabled analysis of their bonding situation supported by quantum-chemical calculations. In general, the employed ILs enabled syntheses with a high selectivity for the yielded polycation. Depending on the investigated chemical system, the following parameters were pinpointed to have significant influence: • Choice of starting materials • Choice of cation as well as anion of the IL • Reaction temperature • Concentration of starting materials in the IL The investigations were supported by NMR spectroscopy, which led to the discovery of nanoparticles of red phosphorus. This finding may stimulate the development of an easily accessible, reactive form of phosphorus without the hazardous drawbacks of the white allotrope. In addition, in situ NMR measurements in ILs were proven a viable option for mechanistic investigations. Conventional solid-state reaction as well as ionothermal syntheses yielded the new layered compounds M2Bi2S3(AlCl4)2 (M = Cu, Ag), which can be interpreted as Bi2S3 molecules embedded in MAlCl4 salts. The choice of starting materials was found to have a crucial influence on the crystallized polytype. Omitting the IL hindered the formation of crystals suitable for single-crystal structure determination. The three new main-group element heteropolycations [Bi6Te4Br2]4+, [Bi3S4AlCl]3+, and [Sb13Se16]7+ as well as known [Bi4Te4]4+ has been synthesized under ionothermal conditions. The Lewis-acidic ILs proved to be exceptional solvents for elements and their halides, and likewise for Bi2S3 and Bi2Te3. Hence, these solvents are not only advantageous reaction media for pnictogen and chalcogen chemistry but also potential (selective but expensive) ore-processing agents. These excellent solvent capabilities extend to complex ternary compounds including heavy transition metals such as Bi16PdCl22 and elemental platinum. This gave rise to the synthesis of metal-rich salts containing [Bi10]4+ antiprisms with an endohedral palladium or, for the first time, platinum atom. Furthermore, the filled bismuth polycation [Rh@Bi9]4+ or the complex cluster [Rh2Bi12]4+ could be obtained from dissolution and conversion of Bi12−xRhX13–x (X = Cl, Br) depending on the employed IL. Real-space bonding analysis revealed that [Rh2Bi12]4+ acquires a unique standing between dative bonding by bismuth polyions and mixed clusters following Wade-Mingos rules. References [1] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1–6. [2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 2006, 443, 320–323. [3] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. [4] E. Ahmed, D. Köhler, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 297–300. [5] E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, et al., Angew. Chem. 2012, 124, 8230–8233; Angew. Chem. Int. Ed. 2012, 51, 8106–8109.
9

Synthesis of Metal-Rich Compounds of Group 15 Elements in Lewis-Acidic Ionic Liquids

Groh, Matthias Friedrich 21 December 2016 (has links)
Chemical synthesis of materials is facing enormous challenges at the present time. The necessary transition toward more sustainable economic processes requires new materials as well as optimized production of well-established materials. However, inorganic materials (e.g., ceramics or alloys) are typically produced industrially by high-temperature processes at up to 2000 °C. A relatively new approach for inorganic synthesis is based on so-called ionic liquids. Ionic liquids (ILs) — often defined as salts with melting points below 100 °C[1] — are usually composed of sterically demanding organic cations and (often) polyatomic anions, which can be selected in order to tune the properties of the IL. Owing to the distinctive physicochemical properties of ILs (e.g., wide liquidus range, high redox and thermal stability, (usually) negligible vapor pressure, tunable polarity), they have gained interest for a wide range of applications. Among the numerous inorganic materials accessible in ILs have been remarkable examples, especially in main-group element chemistry. For instance, a new metastable modification of germanium in the clathrate-II structure[2] or the largest known naked, main-group element cluster [Sn36Ge24Se132]24– (“Zeoball”).[3] The introduction of Lewis-acidic ILs has enhanced the convenience of polycation syntheses and enabled substitution of carcinogenic or toxic substances like benzene, SO2, or AsF5.[4] A considerable number of polycations of group 15 or 16 elements has been synthesized in ILs. The utilization of an IL as reaction medium can be decisive for the composition, structure, and physical properties of the (polycationic) reaction product.[5] In order to broaden the knowledge on synthesis techniques for inorganic materials near ambient temperature based on ILs, this thesis aimed at two goals: • Explorative synthesis of new inorganic compounds in ILs • Elucidating the influence of ILs on product formation For these two goals, metal-rich (polycationic) compounds of group 15 were chosen as promising chemical system, owing to the effectiveness of alkylimidazolium-based Lewis-acidic ILs for the synthesis of this class of compounds. A variety of new polycationic compounds has been successfully synthesized in Lewis-acidic ILs based on 1-n-butyl-3-methylimidazolium (or 1-ethy-3-methylimidazolium) halides and halogenido-aluminates. Determination of the crystal structures by single-crystal X-ray diffraction enabled analysis of their bonding situation supported by quantum-chemical calculations. In general, the employed ILs enabled syntheses with a high selectivity for the yielded polycation. Depending on the investigated chemical system, the following parameters were pinpointed to have significant influence: • Choice of starting materials • Choice of cation as well as anion of the IL • Reaction temperature • Concentration of starting materials in the IL The investigations were supported by NMR spectroscopy, which led to the discovery of nanoparticles of red phosphorus. This finding may stimulate the development of an easily accessible, reactive form of phosphorus without the hazardous drawbacks of the white allotrope. In addition, in situ NMR measurements in ILs were proven a viable option for mechanistic investigations. Conventional solid-state reaction as well as ionothermal syntheses yielded the new layered compounds M2Bi2S3(AlCl4)2 (M = Cu, Ag), which can be interpreted as Bi2S3 molecules embedded in MAlCl4 salts. The choice of starting materials was found to have a crucial influence on the crystallized polytype. Omitting the IL hindered the formation of crystals suitable for single-crystal structure determination. The three new main-group element heteropolycations [Bi6Te4Br2]4+, [Bi3S4AlCl]3+, and [Sb13Se16]7+ as well as known [Bi4Te4]4+ has been synthesized under ionothermal conditions. The Lewis-acidic ILs proved to be exceptional solvents for elements and their halides, and likewise for Bi2S3 and Bi2Te3. Hence, these solvents are not only advantageous reaction media for pnictogen and chalcogen chemistry but also potential (selective but expensive) ore-processing agents. These excellent solvent capabilities extend to complex ternary compounds including heavy transition metals such as Bi16PdCl22 and elemental platinum. This gave rise to the synthesis of metal-rich salts containing [Bi10]4+ antiprisms with an endohedral palladium or, for the first time, platinum atom. Furthermore, the filled bismuth polycation [Rh@Bi9]4+ or the complex cluster [Rh2Bi12]4+ could be obtained from dissolution and conversion of Bi12−xRhX13–x (X = Cl, Br) depending on the employed IL. Real-space bonding analysis revealed that [Rh2Bi12]4+ acquires a unique standing between dative bonding by bismuth polyions and mixed clusters following Wade-Mingos rules. References [1] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1–6. [2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 2006, 443, 320–323. [3] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. [4] E. Ahmed, D. Köhler, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 297–300. [5] E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, et al., Angew. Chem. 2012, 124, 8230–8233; Angew. Chem. Int. Ed. 2012, 51, 8106–8109.
10

Physical and Biological Properties of Synthetic Polycations in Alginate Capsules

Kleinberger, Rachelle 04 1900 (has links)
The use of cell transplantation to treat enzyme deficiency disorders is limited by the immune response targeted against foreign tissue or the use of life-long immunosuppressants. Hiding cells from the immune system in an encapsulation device is promising. Cells encapsulated within an anionic calcium alginate hydrogel bead are protected through a semi-permeable membrane formed by polycation, poly-L-lysine (PLL). A final layer of alginate is added to hide the cationic PLL surface but this has proved to be difficult creating capsules which are prone to fibrotic overgrowth, blocking exchange of nutrients, waste and therapeutic enzymes through the capsule. For long term applications these capsules need to be both biocompatible and mechanically robust. This thesis aims to address the biocompatibility issue of high cationic surface charge by synthesizing polycations of reduced charge using N-(3- aminopropyl)methacrylamide hydrochloride (APM) and N-(2- hydroxypropyl)methacrylamide (HPM) and study the associated mechanical properties of the capsules using micropipette aspiration. Micropipette aspiration was applied and validated for alginate based capsules (gel and liquid core) to quantify stiffness. Varying ratios of APM were used to control the overall charge of the polycations formed while HPM was incorporated as a neutral, hydrophilic, nonfouling comonomer. The molecular weight (MW) was controlled by using reversible addition-fragmentation chain transfer (RAFT) polymerization. The biocompatibility of these polymers was tested by cell adhesion and proliferation of 3T3 fibroblasts onto APM/HPM copolymer functionalized surfaces and by solution toxicity against C2C12 myoblasts. The ability for the APM/HPM copolymers to bind to alginate and form capsules was also assessed, along with the integrity and stiffness of the capsule membrane with or without additional covalent cross-linking by reactive polyanion, poly(methacrylic acid-co-2-vinyl-4,4- dimethylazlactone) (PMV60). Thermo-responsive block copolymers of N-isopropylacrylamide (NIPAM) and 2- hydroxyethylacrylamide (HEA) were also synthesized as potential drug delivery nanoparticles, showing control over micelle morphology with varying NIPAM to HEA ratios. / Thesis / Doctor of Science (PhD) / The treatment of enzyme deficiency disorders by cell transplantation is limited by the immune attack of foreign tissue in absence of immunosuppressants. Cells protected in an encapsulation device has shown promise. Poly-L-lysine, a widely used membrane material in these protective capsules, binds to the anionic gel entrapping living cells because it is highly cationic. The high cationic charge is difficult to hide causing the immune system to build tissue around the capsule, preventing the encapsulated cells from exchanging nutrients and therapeutic enzymes. This thesis aims to replace poly-L-lysine by synthesizing a series of more biocompatible materials of decreasing cationic charge. These materials were studied for the ability to support tissue growth and form stable capsules. The membrane strength was measured using an aspiration method validated for these types of capsules. Reducing the cationic charge of the materials increased the biocompatibility of the capsule membrane but also made for weaker membranes.

Page generated in 0.1009 seconds