Spelling suggestions: "subject:"algorithmes intelligent"" "subject:"lgorithmes intelligent""
1 |
Intelligent quality of experience (QoE) analysis of network served multimedia and web contents / Analyse intelligente de la qualité d'expérience (QoE) dans les réseaux de diffusion de contenu web et mutimédiaPokhrel, Jeevan 19 December 2014 (has links)
De nos jours, l’expérience de l'utilisateur appelé en anglais « User Experience » est devenue l’un des indicateurs les plus pertinents pour les fournisseurs de services ainsi que pour les opérateurs de télécommunication pour analyser le fonctionnement de bout en bout de leurs systèmes (du terminal client, en passant par le réseaux jusqu’à l’infrastructure des services etc.). De plus, afin d’entretenir leur part de marché et rester compétitif, les différents opérateurs de télécommunication et les fournisseurs de services doivent constamment conserver et accroître le nombre de souscription des clients. Pour répondre à ces exigences, ils doivent disposer de solutions efficaces de monitoring et d’estimation de la qualité d'expérience (QoE) afin d’évaluer la satisfaction de leur clients. Cependant, la QoE est une mesure qui reste subjective et son évaluation est coûteuse et fastidieuse car elle nécessite une forte participation humaine (appelé panel de d’évaluation). Par conséquent, la conception d’un outil qui peut mesurer objectivement cette qualité d'expérience avec une précision raisonnable et en temps réel est devenue un besoin primordial qui constitue un challenge intéressant à résoudre. Comme une première contribution, nous avons analysé l'impact du comportement d’un réseau sur la qualité des services de vidéo à la demande (VOD). Nous avons également proposé un outil d'estimation objective de la QoE qui utilise le système expert basé sur la logique floue pour évaluer la QoE à partir des paramètres de qualité de service de la couche réseau. Dans une deuxième contribution, nous avons analysé l'impact des paramètres QoS de couche MAC sur les services de VoD dans le cadre des réseaux sans fil IEEE 802.11n. Nous avons également proposé un outil d'estimation objective de la QoE qui utilise le réseau aléatoire de neurones pour estimer la QoE dans la perspective de la couche MAC. Pour notre troisième contribution, nous avons analysé l'effet de différents scénarios d'adaptation sur la QoE dans le cadre du streaming adaptatif au débit. Nous avons également développé une plate-Forme Web de test subjectif qui peut être facilement intégré dans une plate-Forme de crowd-Sourcing pour effectuer des tests subjectifs. Finalement, pour notre quatrième contribution, nous avons analysé l'impact des différents paramètres de qualité de service Web sur leur QoE. Nous avons également proposé un algorithme d'apprentissage automatique i.e. un système expert hybride rugueux basé sur la logique floue pour estimer objectivement la QoE des Web services / Today user experience is becoming a reliable indicator for service providers and telecommunication operators to convey overall end to end system functioning. Moreover, to compete for a prominent market share, different network operators and service providers should retain and increase the customers’ subscription. To fulfil these requirements they require an efficient Quality of Experience (QoE) monitoring and estimation. However, QoE is a subjective metric and its evaluation is expensive and time consuming since it requires human participation. Therefore, there is a need for an objective tool that can measure the QoE objectively with reasonable accuracy in real-Time. As a first contribution, we analyzed the impact of network conditions on Video on Demand (VoD) services. We also proposed an objective QoE estimation tool that uses fuzzy expert system to estimate QoE from network layer QoS parameters. As a second contribution, we analyzed the impact of MAC layer QoS parameters on VoD services over IEEE 802.11n wireless networks. We also proposed an objective QoE estimation tool that uses random neural network to estimate QoE from the MAC layer perspective. As our third contribution, we analyzed the effect of different adaption scenarios on QoE of adaptive bit rate streaming. We also developed a web based subjective test platform that can be easily integrated in a crowdsourcing platform for performing subjective tests. As our fourth contribution, we analyzed the impact of different web QoS parameters on web service QoE. We also proposed a novel machine learning algorithm i.e. fuzzy rough hybrid expert system for estimating web service QoE objectively
|
2 |
Combining approaches for predicting genomic evolution / Combinaison d'approches pour résoudre le problème du réarrangement de génomesAlkindy, Bassam 17 December 2015 (has links)
En bio-informatique, comprendre comment les molécules d’ADN ont évolué au cours du temps reste un problème ouvert etcomplexe. Des algorithmes ont été proposés pour résoudre ce problème, mais ils se limitent soit à l’évolution d’un caractèredonné (par exemple, un nucléotide précis), ou se focalisent a contrario sur de gros génomes nucléaires (plusieurs milliardsde paires de base), ces derniers ayant connus de multiples événements de recombinaison – le problème étant NP completquand on considère l’ensemble de toutes les opérations possibles sur ces séquences, aucune solution n’existe à l’heureactuelle. Dans cette thèse, nous nous attaquons au problème de reconstruction des séquences ADN ancestrales en nousfocalisant sur des chaînes nucléotidiques de taille intermédiaire, et ayant connu assez peu de recombinaison au coursdu temps : les génomes de chloroplastes. Nous montrons qu’à cette échelle le problème de la reconstruction d’ancêtrespeut être résolu, même quand on considère l’ensemble de tous les génomes chloroplastiques complets actuellementdisponibles. Nous nous concentrons plus précisément sur l’ordre et le contenu ancestral en gènes, ainsi que sur lesproblèmes techniques que cette reconstruction soulève dans le cas des chloroplastes. Nous montrons comment obtenirune prédiction des séquences codantes d’une qualité telle qu’elle permette ladite reconstruction, puis comment obtenir unarbre phylogénétique en accord avec le plus grand nombre possible de gènes, sur lesquels nous pouvons ensuite appuyernotre remontée dans le temps – cette dernière étant en cours de finalisation. Ces méthodes, combinant l’utilisation d’outilsdéjà disponibles (dont la qualité a été évaluée) à du calcul haute performance, de l’intelligence artificielle et de la biostatistique,ont été appliquées à une collection de plus de 450 génomes chloroplastiques. / In Bioinformatics, understanding how DNA molecules have evolved over time remains an open and complex problem.Algorithms have been proposed to solve this problem, but they are limited either to the evolution of a given character (forexample, a specific nucleotide), or conversely focus on large nuclear genomes (several billion base pairs ), the latter havingknown multiple recombination events - the problem is NP complete when you consider the set of all possible operationson these sequences, no solution exists at present. In this thesis, we tackle the problem of reconstruction of ancestral DNAsequences by focusing on the nucleotide chains of intermediate size, and have experienced relatively little recombinationover time: chloroplast genomes. We show that at this level the problem of the reconstruction of ancestors can be resolved,even when you consider the set of all complete chloroplast genomes currently available. We focus specifically on the orderand ancestral gene content, as well as the technical problems this raises reconstruction in the case of chloroplasts. Weshow how to obtain a prediction of the coding sequences of a quality such as to allow said reconstruction and how toobtain a phylogenetic tree in agreement with the largest number of genes, on which we can then support our back in time- the latter being finalized. These methods, combining the use of tools already available (the quality of which has beenassessed) in high performance computing, artificial intelligence and bio-statistics were applied to a collection of more than450 chloroplast genomes.
|
Page generated in 0.1145 seconds