• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 16
  • 11
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 50
  • 13
  • 12
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invasive alien species and the protection of biodiversity: the role of quarantine laws in resolving inadequacies in the international legal regime

Riley, Sophie, Law, Faculty of Law, UNSW January 2008 (has links)
The problem of invasive alien species (IAS) is recognized as the second most serious threat to loss of biodiversity after habitat destruction. It is a problem largely created by humans as they transport and introduce species, deliberately and accidentally, from one part of the globe to another. The pressures exerted on biodiversity by international trade are one of the most serious aspects of the IAS problem. Although states are under obligations in international environmental law to prevent the entry of, and control, those alien species that threaten biodiversity, to date state practice has often been found wanting. In particular, quarantine regulation, which can be a state??s first line of defence against IAS, is mainly used by states to protect their farming and agricultural product sectors rather than biodiversity at large. The reasons for this include lack of domestic resources and lack of guidance at the international level. However, even if states were to expand the purview of quarantine, the question arises whether they would be able to use quarantine regulation to protect biodiversity from IAS while simultaneously fulfilling their international trade law obligations. This study seeks to answer this question by examining international environmental law and international trade law in their application to quarantine regulation. In doing so, the study identifies many areas of conflict. The different policies that underpin environmental and trade regimes mean that environmental concepts, such as the precautionary principle and the ecosystem approach, are difficult to apply within the international trade law regime. A way of achieving a more harmonized international response to the problem of IAS is suggested by incorporating environmental considerations into the international standards used by states to design and implement domestic quarantine measures. To facilitate the practical implementation of international standards the study further recommends appropriate financial and institutional capacity building mechanisms.
2

Evolution and impact of invasive species : cane toads and snakes in Australia

Phillips, Ben Lee January 2004 (has links)
Evolution can occur rapidly, along timescales that are traditionally regarded as 'ecological'. Despite growing acceptance among biologists of rapid evolution, a strong paradigm of contemporary evolution is still absent in many sub-disciplines. Here I apply a contemporary evolution viewpoint to conservation biology. Specifically, I examine the impact of cane toads (Bufo marinus) on Australian snakes. Toads were introduced into Australia in 1935, have spread rapidly and represent a novel, extremely toxic prey item to na�ve Australian predators (including snakes). Based on dietary preferences and geographic distributions I find that 49 species of Australian snake are potentially at risk from the invasion of the toad. Furthermore, examination of physiological resistance to toad toxin in 10 of these �at risk� species strongly suggests that most species of Australian snake are poorly equipped to deal with a likely dose of toad toxin. Even species that are highly resistant to toad toxin (such as the keelback, Tropidonophis mairii) face indirect fitness costs associated with consuming toads. Within a population of snakes however, the impact of toads is unlikely to be random. For example, the examination of several component allometries describing the interaction between snakes and toads revealed that, within a species, smaller snakes are more likely to ingest a fatal dose of toad toxin than are larger snakes. Further consideration of the interaction between snakes and toads suggests that toads will not only be exerting differential impact on snakes based upon morphology, but also exert non-random selection on prey preference and resistance to toad toxin in snake populations. To examine the possibility of a morphological response by snakes to toads, I examined changes in the body size and relative head size of four species of snake as a consequence of time since exposure to toads. Two of the species (green treesnakes and red-bellied blacksnakes) are predicted to face strong impacts from toads. These two species showed an increase in mean body size and a decrease in relative head size as a consequence of time since exposure to toads; both changes in an adaptive direction. In contrast, the other two species (keelbacks and swampsnakes) are predicted to face much lower impact from toads, and these two species showed little or no evidence of morphological change associated with time since exposure to toads. These results indicate an adaptive change in morphology at a rate that is proportional to the predicted level of impact for each species, strongly suggesting an evolved response. Red-bellied blacksnakes (a toad-vulnerable species) were further assessed for evolved responses in prey preference and toxin resistance. Comparisons between toad-exposed and toad-na�ve populations of blacksnakes revealed that snakes from toad-exposed populations exhibited slightly higher resistance to toad toxin and a much-reduced tendency to eat toads, when compared with toad-na�ve snakes. Na�ve snakes exhibited no tendency to learn avoidance of toxic prey, nor were they able to acquire resistance to toxin as a result of several sub-lethal doses, suggesting that the observed differences between populations is evolved rather than acquired. Together, these results strongly suggest that blacksnakes are exhibiting an evolved shift in prey preference and toxin resistance as a consequence of exposure to toads. Thus, it appears that snakes are exhibiting adaptation at multiple traits in response to exposure to toads. Given the high likelihood that these adaptive shifts have an evolved basis, it appears that the impact of toads will decrease with time in many snake populations. But what about toads? Because the outcome of the interaction between a toad and a snake is also mediated by the body size and relative toxicity of toads, it is important to understand how these traits vary in space and time. Exploratory analysis revealed that toads exhibit a decrease in body size and a decrease in relative toxicity as a consequence of time since colonisation, indicating that their impact on native predators decreases with time. Additionally, there appears to be meaningful spatial variation in toad relative toxicity, indicating that some populations of native predators are facing higher impact from toads than others. Overall, these results clearly indicate the importance of assessing the potential for rapid evolutionary response in impacted systems. Doing so may provide evidence that some species are in less trouble than originally thought. Additionally, and as more data accumulate, it may be possible to characterise certain categories of environmental impact by their potential for eliciting adaptive response from �impacted� species. This approach has strong implications for the way conservation priorities are set and the way in which conservation dependent populations are managed.
3

Invasive alien species and the protection of biodiversity: the role of quarantine laws in resolving inadequacies in the international legal regime

Riley, Sophie, Law, Faculty of Law, UNSW January 2008 (has links)
The problem of invasive alien species (IAS) is recognized as the second most serious threat to loss of biodiversity after habitat destruction. It is a problem largely created by humans as they transport and introduce species, deliberately and accidentally, from one part of the globe to another. The pressures exerted on biodiversity by international trade are one of the most serious aspects of the IAS problem. Although states are under obligations in international environmental law to prevent the entry of, and control, those alien species that threaten biodiversity, to date state practice has often been found wanting. In particular, quarantine regulation, which can be a state??s first line of defence against IAS, is mainly used by states to protect their farming and agricultural product sectors rather than biodiversity at large. The reasons for this include lack of domestic resources and lack of guidance at the international level. However, even if states were to expand the purview of quarantine, the question arises whether they would be able to use quarantine regulation to protect biodiversity from IAS while simultaneously fulfilling their international trade law obligations. This study seeks to answer this question by examining international environmental law and international trade law in their application to quarantine regulation. In doing so, the study identifies many areas of conflict. The different policies that underpin environmental and trade regimes mean that environmental concepts, such as the precautionary principle and the ecosystem approach, are difficult to apply within the international trade law regime. A way of achieving a more harmonized international response to the problem of IAS is suggested by incorporating environmental considerations into the international standards used by states to design and implement domestic quarantine measures. To facilitate the practical implementation of international standards the study further recommends appropriate financial and institutional capacity building mechanisms.
4

Invasive alien species and the protection of biodiversity: the role of quarantine laws in resolving inadequacies in the international legal regime

Riley, Sophie, Law, Faculty of Law, UNSW January 2008 (has links)
The problem of invasive alien species (IAS) is recognized as the second most serious threat to loss of biodiversity after habitat destruction. It is a problem largely created by humans as they transport and introduce species, deliberately and accidentally, from one part of the globe to another. The pressures exerted on biodiversity by international trade are one of the most serious aspects of the IAS problem. Although states are under obligations in international environmental law to prevent the entry of, and control, those alien species that threaten biodiversity, to date state practice has often been found wanting. In particular, quarantine regulation, which can be a state??s first line of defence against IAS, is mainly used by states to protect their farming and agricultural product sectors rather than biodiversity at large. The reasons for this include lack of domestic resources and lack of guidance at the international level. However, even if states were to expand the purview of quarantine, the question arises whether they would be able to use quarantine regulation to protect biodiversity from IAS while simultaneously fulfilling their international trade law obligations. This study seeks to answer this question by examining international environmental law and international trade law in their application to quarantine regulation. In doing so, the study identifies many areas of conflict. The different policies that underpin environmental and trade regimes mean that environmental concepts, such as the precautionary principle and the ecosystem approach, are difficult to apply within the international trade law regime. A way of achieving a more harmonized international response to the problem of IAS is suggested by incorporating environmental considerations into the international standards used by states to design and implement domestic quarantine measures. To facilitate the practical implementation of international standards the study further recommends appropriate financial and institutional capacity building mechanisms.
5

Invasive alien species and the protection of biodiversity: the role of quarantine laws in resolving inadequacies in the international legal regime

Riley, Sophie, Law, Faculty of Law, UNSW January 2008 (has links)
The problem of invasive alien species (IAS) is recognized as the second most serious threat to loss of biodiversity after habitat destruction. It is a problem largely created by humans as they transport and introduce species, deliberately and accidentally, from one part of the globe to another. The pressures exerted on biodiversity by international trade are one of the most serious aspects of the IAS problem. Although states are under obligations in international environmental law to prevent the entry of, and control, those alien species that threaten biodiversity, to date state practice has often been found wanting. In particular, quarantine regulation, which can be a state??s first line of defence against IAS, is mainly used by states to protect their farming and agricultural product sectors rather than biodiversity at large. The reasons for this include lack of domestic resources and lack of guidance at the international level. However, even if states were to expand the purview of quarantine, the question arises whether they would be able to use quarantine regulation to protect biodiversity from IAS while simultaneously fulfilling their international trade law obligations. This study seeks to answer this question by examining international environmental law and international trade law in their application to quarantine regulation. In doing so, the study identifies many areas of conflict. The different policies that underpin environmental and trade regimes mean that environmental concepts, such as the precautionary principle and the ecosystem approach, are difficult to apply within the international trade law regime. A way of achieving a more harmonized international response to the problem of IAS is suggested by incorporating environmental considerations into the international standards used by states to design and implement domestic quarantine measures. To facilitate the practical implementation of international standards the study further recommends appropriate financial and institutional capacity building mechanisms.
6

Evolution and impact of invasive species : cane toads and snakes in Australia

Phillips, Ben Lee January 2004 (has links)
Evolution can occur rapidly, along timescales that are traditionally regarded as 'ecological'. Despite growing acceptance among biologists of rapid evolution, a strong paradigm of contemporary evolution is still absent in many sub-disciplines. Here I apply a contemporary evolution viewpoint to conservation biology. Specifically, I examine the impact of cane toads (Bufo marinus) on Australian snakes. Toads were introduced into Australia in 1935, have spread rapidly and represent a novel, extremely toxic prey item to na�ve Australian predators (including snakes). Based on dietary preferences and geographic distributions I find that 49 species of Australian snake are potentially at risk from the invasion of the toad. Furthermore, examination of physiological resistance to toad toxin in 10 of these �at risk� species strongly suggests that most species of Australian snake are poorly equipped to deal with a likely dose of toad toxin. Even species that are highly resistant to toad toxin (such as the keelback, Tropidonophis mairii) face indirect fitness costs associated with consuming toads. Within a population of snakes however, the impact of toads is unlikely to be random. For example, the examination of several component allometries describing the interaction between snakes and toads revealed that, within a species, smaller snakes are more likely to ingest a fatal dose of toad toxin than are larger snakes. Further consideration of the interaction between snakes and toads suggests that toads will not only be exerting differential impact on snakes based upon morphology, but also exert non-random selection on prey preference and resistance to toad toxin in snake populations. To examine the possibility of a morphological response by snakes to toads, I examined changes in the body size and relative head size of four species of snake as a consequence of time since exposure to toads. Two of the species (green treesnakes and red-bellied blacksnakes) are predicted to face strong impacts from toads. These two species showed an increase in mean body size and a decrease in relative head size as a consequence of time since exposure to toads; both changes in an adaptive direction. In contrast, the other two species (keelbacks and swampsnakes) are predicted to face much lower impact from toads, and these two species showed little or no evidence of morphological change associated with time since exposure to toads. These results indicate an adaptive change in morphology at a rate that is proportional to the predicted level of impact for each species, strongly suggesting an evolved response. Red-bellied blacksnakes (a toad-vulnerable species) were further assessed for evolved responses in prey preference and toxin resistance. Comparisons between toad-exposed and toad-na�ve populations of blacksnakes revealed that snakes from toad-exposed populations exhibited slightly higher resistance to toad toxin and a much-reduced tendency to eat toads, when compared with toad-na�ve snakes. Na�ve snakes exhibited no tendency to learn avoidance of toxic prey, nor were they able to acquire resistance to toxin as a result of several sub-lethal doses, suggesting that the observed differences between populations is evolved rather than acquired. Together, these results strongly suggest that blacksnakes are exhibiting an evolved shift in prey preference and toxin resistance as a consequence of exposure to toads. Thus, it appears that snakes are exhibiting adaptation at multiple traits in response to exposure to toads. Given the high likelihood that these adaptive shifts have an evolved basis, it appears that the impact of toads will decrease with time in many snake populations. But what about toads? Because the outcome of the interaction between a toad and a snake is also mediated by the body size and relative toxicity of toads, it is important to understand how these traits vary in space and time. Exploratory analysis revealed that toads exhibit a decrease in body size and a decrease in relative toxicity as a consequence of time since colonisation, indicating that their impact on native predators decreases with time. Additionally, there appears to be meaningful spatial variation in toad relative toxicity, indicating that some populations of native predators are facing higher impact from toads than others. Overall, these results clearly indicate the importance of assessing the potential for rapid evolutionary response in impacted systems. Doing so may provide evidence that some species are in less trouble than originally thought. Additionally, and as more data accumulate, it may be possible to characterise certain categories of environmental impact by their potential for eliciting adaptive response from �impacted� species. This approach has strong implications for the way conservation priorities are set and the way in which conservation dependent populations are managed.
7

Rizika vyplývající z chovu a introdukce akvarijních plžů / Risks arising from breeding and introduction of aquarium snails

Jarošová, Martina January 2016 (has links)
Information was gathered regarding all aquarium and already introduced alien snail species (Gastropods), which are being imported to Europe. For the integrity of the research non-native and aquarium clams (Bivalve) were also included. Profiles of species were created based on collected information and the data were subsequently used for creating questionnaires. Questionnaires of each species were processed by FI - ISK, version 1.19 screening tool. Score of invasiveness risk potential was evaluated for each species individually. Surveyed taxa were divided into three groups according to their scores: low risk, medium risk and high risk. Celetaia persculpta was evaluated as aquarium snail (Gastropods) with the lowest risk for native fauna of Czech Republic. According to the results, Pomacea maculata and Pomacea canaliculata are the aquarium snails (Gastropods) with the highest invasiveness risk potential. The riskiest introduced species is Potamopyrgus antipodarum. Scabies crispata and Hyriopsis bialata are clams (Bivalve) with the least risk for the native fauna of Czech Republic. Corbicula fluminea and Dreissena polymorpha were analyzed as clams (Bivalve) with the highest invasiveness risk potential. By comparing aquarium species with species that were already introduced into Czech nature, I conclude that the aquarium snails (clams) do not represent similar risk like the alien species that were introduced without the share of aquarists.
8

Allelopathic potential of the invasive alien Himalayan balsam (Impatiens glandulifera Royle)

Smith, Owen Peter January 2013 (has links)
Investigations were carried out into the allelopathic potential of the invasive alien annual Himalayan Balsam (Impatiens glandulifera Royle) using a series of bioassays, including ones developed or adapted for this study. They were evaluated for their suitability to detect three of the four main modes of allelochemical release, namely leaching, exudation and decomposition. Assays which involved the measurement of lettuce radicles and hypocotyls gave reliable results and allowed a range of different Impatiens material, both living and dead, to be assessed and ranked according to the allelopathic effects demonstrated. Attempts were made to isolate resource competition from allelopathy using separately grown but connected donor and receiver plants and a density dependent design where single I. glandulifera plants were grown in pots with variable numbers of receiver plants. Results proved inconclusive. Initial experiments showed that the allelopathic potential of I. glandulifera varied according to the organ from which the material was derived. Pods, leaves and stems produced the greatest inhibition of lettuce seedlings. Effects on germination were not significant at most of the concentrations tested. Live roots of I. glandulifera plants produced pronounced orange staining of the agar into which they were placed and showed clear evidence of distance dependent inhibition of lettuce radicles. Effects were limited to growth rather than germination of the test plants. Germinating I. glandulifera seeds caused a significant inhibition of lettuce radicle elongation when the two species were grown together in an agar medium. The inhibitory effects increased significantly with increasing exposure time. Increasing I. glandulifera seedling number also produced significant reductions in lettuce radicle length. Dormant seeds, by contrast, stimulated growth. Dead seeds did not produce significant changes to the growth of the test plants. When rhizosphere soil was gathered from pot grown I. glandulifera plants, the results were mixed. Initial samples inhibited growth, whereas those collected from dying plants over a period of weeks stimulated growth. Further experimentation is required before the indications of allelopathic interactions demonstrated here can be applied to the behaviour of wild populations of I. glandulifera.
9

Právní úprava problematiky nepůvodních druhů / Non-native species legal regulation

Tučková, Dagmar January 2012 (has links)
Diploma thesis deals with alien species, primarily invasive species. Only in Europe there are 10 822 alien species, of which 10-15% could have a negative economic or ecological impact. Thesis highlights the threat alien species pose to the original species, biodiversity and human health, and necessity of cooperation in resolving this issue. The author gives their characteristics and provides an overview of legislation in the field of international, European and Czech law.
10

Invasiva främmande arter: försiktighetsprincipen som förutsättning för effektiva åtgärder

Johansson, Oskar January 2019 (has links)
Biological diversity is an essential prerequisite for life on earth and for the function of its ecosystems. Without biological diversity the ecosystems will eventually collapse, and it is thus necessary to maintain a healthy level of variation at ecological-, species- and genetic- level. Invasive alien species (IAS) are now recognized as the second highest threat to biological diversity. As a result, new legislation aiming to counteract the increasing issues with IAS are introduced e.g. in the EU. The purpose of this essay is to evaluate the function and importance of the precautionary principle regarding the control of IAS, using legal analysis. The legal analysis is complemented by an analysis of other scientific sources e.g. in order to describe biological diversity in general as well as the real and potential the ecosystem-consequences of the introduction of species. EU environmental law is based on the precautionary principle and so is thus the newly established IAS Regulation. The IAS Regulation requires an extensive riskassessment before a species will be encompassed by the regulation. The risk-assessment process does however not entirely correspond with the (strong version of the) precautionary principle, as actions in accordance with this principle requires an assumed risk, which must not necessarily be scientifically established. This results in a discrepancy between the legal definition and the actual definition of an IAS; species which have undergone the risk-assessment process can obtain the status of IAS (legally) whilst others, which has not yet been assessed or do not fulfil all criteria, do not have this status and are thus not covered by the legislation. There are 12 000 alien species within the EU, of which 1800 are considered invasive. However, only 49 different species are currently covered by the IAS-regulation. This cannot be considered to be in keeping with the (strong version of the) precautionary principle. / Biologisk mångfald är en förutsättning för liv på jorden och ekosystem behöver en variation av arter likväl som gener. Invasiva främmande arter (IAS) har erkänts som ett av de största hoten mot den biologiska mångfalden, vilket har resulterat i ny lagstiftning inom EU. Syftet med den här uppsatsen är att fastställa vilken roll försiktighetsprincipen spelar vid regler som omfattar IAS; i allmänhet och i enskilda fall. För att utreda rättsläget används en rättsdogmatisk metod som kompletteras med en analys av naturvetenskapligt material för att klargöra vilka faktiska effekter IAS har. Miljörätten inom EU baseras på försiktighetsprincipen och den nyligen (relativt) utfärdade IAS-förordningen baseras därefter på försiktighetsprincipen. Det måste dock utföras en riskbedömning innan arter omfattas av IAS-förordningens bestämmelser (och legalt definieras som IAS inom EU). Försiktighetsprincipen (en stark version) ska emellertid betyda att en antagen risk är tillräckligt för att åtgärder ska vidtas; genom riskbedömningen betyder det däremot att det handlar om en fastställd risk. Detta betyder även att den faktiska definitionen IAS och den legala är olik; en art kan uppfylla definitionen IAS i praktiken men inte legalt. Försiktighetsprincipen (en stark version) tillämpas därför på legalt definierade IAS inom EU medan de facto IAS inte åtnjuter samma grad av försiktighet.  EU har själva yttrat, i det första skälet i IAS-förordningen, att det existerar 12 000 främmande arter inom EU varav 1800 av dessa är invasiva; IAS-förordningen omfattar dock endast 49 av dessa arter.

Page generated in 0.0673 seconds