Spelling suggestions: "subject:"clliptical designal aprocessing"" "subject:"clliptical designal eprocessing""
1 |
AlGaAs Microring Resonators for All-Optical Signal ProcessingGomes, Prova Christina January 2016 (has links)
Photonic integration and all-optical signal processing are promising solutions to the increasing demand for high-bandwidth and high-speed communication systems. III-V semiconductor materials, specially AlGaAs, have shown potentials for photonic integration and efficient nonlinear processes due to their low nonlinear absorption, flexibility at controlling the refractive index, and mature fabrication technology.
In this thesis, we report the designs of AlGaAs microring resonators optimized for efficient four-wave mixing. Four-wave mixing (FWM) is a nonlinear optical phenomenon which can be used to realize many optical signal processing operations such as optical wavelength conversion and optical time division multiplexing and demultiplexing. Our designed AlGaAs microring resonators are expected to have good optical confinement, transmission characteristics, and efficient coupling between the ring and waveguide.
Here we also present our fabrication efforts to fabricate the microring resonators device and the insights gained in the process. The microring resonators devices have a potential to be used in optical communication networks for all-optical signal processing operations.
|
2 |
TITLE: MgO doped PPLN optical wavelength converter with an integrated structureDeng, Juan 08 1900 (has links)
This thesis describes the development of optical wavelength converters with an integrated coupling structure, fabricated on periodically poled MgO doped lithium niobate (MgO:LN) for optical fiber communication and other all-optical signal processing applications. Wavelength converter is an integral part of any broadband communication system. The ability to transfer information between carrier wavelengths allows for efficient use of the available bandwidth in a transmission medium. Wavelength converters based on PPLN waveguides are among the most efficient nonlinear optical devices available today, due to highspeed operation, low noise, parallel operation on multiple wavelength channels and preservation of information carried in the optical domain. However, low conversion efficiency is an issue for wavelength converter based on PPLN waveguide. Compared to pure LN, MgO doped LN decrease restriction in optical damage and increase conversion efficiency. Integrated coupling structure demonstrates a solution to mode-coupling of the input wave to the fundamental mode of DFG device and increase the conversion efficiency. Therefore, a periodically poled MgO doped lithium niobate (MgO:LN) waveguides with integrated coupling structure is fabricated. The components of integrated coupling structure are compatible with lithium nobate waveguides, including directional couplers, small radius bends, adiabatic taper, and mode filter. The integrated coupling structure combines the pump and signal waves into the DFG conversion section, and makes the single mode conversion of the pump from input waveguide to conversion section. Theoretical models and simulations are provided in this thesis, and performances of the device with this structure are also presented. / Thesis / Master of Applied Science (MASc)
|
3 |
All-Optical Clock Recovery, Photonic Balancing, and Saturated Asymmetric Filtering For Fiber Optic Communication SystemsParsons, Earl Ryan January 2010 (has links)
In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator.I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB.I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB.Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The marks, which represented data, experienced a spectral shift due to SPM while the spaces, which consisted of noise, did not. A bandpass filter placed after the SOA then selected the signal and filtered out what was originally in-band noise. The receiver sensitivity was improved by 3 dB.
|
4 |
Multi-Core Fiber and Optical Supersymmetry: Theory and ApplicationsMacho Ortiz, Andrés 02 September 2019 (has links)
[ES] A día de hoy, las redes de comunicaciones de fibra óptica están alcanzando su capacidad límite debido al rápido crecimiento de la demanda de datos en la última década, generado por el auge de los teléfonos inteligentes, las tabletas, las redes sociales, la provisión de servicios en la nube, las transmisiones en streaming y las comunicaciones máquina-a-máquina. Con el fin de solventar dicho problema, se ha propuesto incrementar la capacidad límite de las redes ópticas mediante el reemplazo de la fibra óptica clásica por la fibra óptica multinúcleo (MCF, acrónimo en inglés de multi-core fiber), la cual es capaz de integrar la capacidad de varias fibras ópticas clásicas en su estructura ocupando prácticamente la misma sección transversal que éstas.
Sin embargo, explotar todo el potencial de una fibra MCF requiere entender en profundidad los fenómenos electromagnéticos que aparecen en este tipo de fibras cuando guiamos luz a travésde ellas. Así pues, en la primera parte de la tesis se analizan teóricamente estos fenómenos electromagnéticos y, posteriormente, se estudia la viabilidad de la tecnología MCF en distintos tipos de redes ópticas de transporte, específicamente, en aquellas que hacen uso de transmisiones radio-sobre-fibra. Estos resultados pueden ser de gran utilidad para las futuras generaciones móviles 5G y Beyond-5G en las próximas décadas.
Adicionalmente, con el fin de expandir las funcionalidades básicas de las fibras MCF, esta tesis explora nuevas estrategias de diseño de las mismas utilizando la analogía existente entre las ecuaciones que rigen la mecánica cuántica y el electromagnetismo. Con esta idea en mente, en la segunda parte de la tesis se propone diseñar una nueva clase de fibras MCF usando las matemáticas de la supersimetría, surgida en el seno de la teoría de cuerdas y de la teoría cuántica de campos como un marco teórico de trabajo que permite unificar las interacciones fundamentales de la naturaleza (la nuclear fuerte, la nuclear débil, el electromagnetismo y la gravedad). Girando en torno a esta idea surgen las fibras MCF supersimétricas, las cuales nos permiten procesar la información de los usuarios durante la propia propagación de la luz a través de ellas, reduciendo así la complejidad del procesado de datos del usuario en recepción.
Finalmente, esta tesis se completa introduciendo un cambio de paradigma que permite diseñar dispositivos fotónicos disruptivos. Demostramos que la supersimetría de mecánica cuántica no relativista, propuesta como una serie de transformaciones matemáticas restringidas al dominio espacial, se puede extender también al dominio del tiempo, al menos dentro del marco de trabajo de la fotónica. Como resultado de nuestras investigaciones, demostramos que la supersimetría temporal puede convertirse en una plataforma prometedora para la fotónica integrada ya que nos permite diseñar nuevos dispositivos ópticos versátiles y ultra-compactos que pueden jugar un papel clave en los procesadores del futuro.
Asimismo, con el fin de hacer los resultados principales de esta tesis doctoral lo más generales posibles, se detalla cómo poder extrapolarlos a otros campos de la física como acústica y mecánica cuántica. / [CA] Avui en dia, les xarxes de comunicacions de fibra òptica estan aconseguint la seua capacitat límit a causa del ràpid creixement de la demanda de dades duante l'última dècada, generat per l'auge dels telèfons intel·ligents, les tablets, les xarxes socials, la provisió de servicis en la núvol, les transmissions en streaming i les comunicacions màquina-a-màquina. Per a resoldre el dit problema, s'ha proposat incrementar la capacitat límit de les xarxes òptiques per mitjà del reemplaçament de la fibra òptica clàssica per la fibra òptica multinúcleo (MCF, acrònim en anglés de multi-core fiber), la qual és capaç d'integrar la capacitat de diverses fibres òptiques clàssiques en la seua estructura ocupant pràcticament la mateixa secció transversal que estes.
Tanmateix, explotar tot el potencial d'una fibra MCF requereix entendre en profunditat els fenòmens electromagnètics que apareixen en aquestes fibres quan guiem llum a través d'elles. Així, doncs, en la primera part de la tesi analitzem teòricament aquests fenòmens electromagnètics i, posteriorment, estudiem la viabilitat de la tecnologia MCF en distints tipus de xarxes òptiques de transport, específicament, en aquelles que fan ús de transmissions ràdio-sobre-fibra. Estos resultats poden ser de gran utilitat per a les futures generacions mòbils 5G i Beyond-5G en les pròximes dècades.
Addicionalment, a fi d'expandir les funcionalitats bàsiques de les fibres MCF, esta tesi explora noves estratègies de disseny de les mateixes utilitzant l'analogia existent entre les equacions que regixen la mecànica quàntica i l'electromagnetisme. Amb aquesta idea en ment, en la segona part de la tesi proposem dissenyar una nova classe de fibres MCF usant les matemàtiques de la supersimetria, sorgida en el si de la teoria de cordes i de la teoria quàntica de camps com un marc teòric de treball que permet unificar les interaccions fonamentals de la natura (la nuclear forta, la nuclear feble, l'electromagnetisme i la gravetat). Al voltant d'aquesta idea sorgeixen les fibres MCF supersimètriques, les quals ens permeten processar la informació dels usuaris durant la pròpia propagació de la llum a través d'elles, reduint així la complexitat del processament de dades de l'usuari a recepció.
Finalment, esta tesi es completa introduint un canvi de paradigma que permet dissenyar dispositius fotónicos disruptius. Demostrem que la supersimetria de mecànica quàntica no relativista, proposta com una sèrie de transformacions matemàtiques restringides al domini espacial, es pot estendre també al domini del temps, almenys dins del marc de treball de la fotónica. Com resultat de les nostres investigacions, demostrem que la supersimetria temporal pot convertir-se en una plataforma prometedora per a la fotònica integrada ja que ens permet dissenyar nous dispositius òptics versàtils i ultracompactes que poden jugar un paper clau en els processadors del futur.
Per tal de fer els resultats principals d'aquesta tesi doctoral el més generals possibles, es detalla com poder extrapolar-los a altres camps de la física com ara la acústica i la mecànica quàntica. / [EN] To date, communication networks based on optical fibers are rapidly approaching their capacity limit as a direct consequence of the increment of the data traffic demand in the last decade due to the ubiquity of smartphones, tablets, social networks, cloud computing applications, streaming services including video and gaming, and machine-to-machine communications. In such a scenario, a new class of optical fiber which is able to integrate the capacity of several classical optical fibers approximately in the same transverse section as that of the original one, the multi-core fiber (MCF), has been recently proposed to overcome the capacity limits of current optical networks.
However, the possibility of exploiting the full potential of an MCF requires to deeply understand the electromagnetic phenomena that can be observed when guiding light in this optical medium. In this vein, in the first part of this thesis, we analyze theoretically these phenomena and, next, we study the suitability of the MCF technology in optical transport networks using radio-over-fiber transmissions. These findings could be of great utility for 5G and Beyond-5G cellular technology in the next decades.
In addition, the close connection between the mathematical framework of quantum mechanics and electromagnetism becomes a great opportunity to explore ground-breaking design strategies of these new fibers that allow us to expand their basic functionalities. Revolving around this idea, in the second part of this thesis we propose to design a new class of MCFs using the mathematics of supersymmetry (SUSY), emerged within the context of string and quantum field theory as a means to unify the basic interactions of nature (strong, electroweak, and gravitational interactions). Interestingly, a supersymmetric MCF will allow us, not only to propagate the light, but also to process the information of users during propagation.
Finally, we conclude this thesis by introducing a paradigm shift that allows us to design disruptive optical devices. We demonstrate that the basic ideas of SUSY in non-relativistic quantum mechanics, restricted to the space domain to clarify unsolved questions about SUSY in string and quantum field theory, can also be extended to the time domain, at least within the framework of photonics. In this way, it is shown that temporal supersymmetry may serve as a key tool to judiciously design versatile and ultra-compact optical devices enabling a promising new platform for integrated photonics.
For the sake of completeness, we indicate how to extrapolate the main results of this thesis to other fields of physics, such as acoustics and quantum mechanics. / Macho Ortiz, A. (2019). Multi-Core Fiber and Optical Supersymmetry: Theory and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124964
|
5 |
All-Optical Signal Processing Using the Kerr Effect for Fiber-Based SensorsVanus, Benoit Yvon Eric 20 October 2021 (has links)
All-optical signal processing has grown over the last decade due to the demand for high-speed and high-bandwidth data processing. The main objective of all-optical signal processing is to avoid signal conversions from the optical domain to electrical domain and then back to optical, which introduces noise and bottlenecks data transmission speeds. These conversions can be avoided by manipulating light using an optical medium, e.g. an optical fiber, and taking advantage of the nonlinear response of the medium's dipoles to an external electric field. Nonlinear effects arising from the third-order nonlinearities, such as the Kerr effect, allow for an intense light beam to modify the refractive index of a medium through which it propagates.
As a consequence, the phase of the light beam changes as it propagates and new frequencies are generated; this phenomenon is referred to as self-phase modulation (SPM). Light's ability to modify not only its own properties but also the properties of other co-propagating beams has been widely applied in telecommunications to create integrated all-optical data regenerators. While optical fibers are mainly utilized to transmit data at extreme speeds, they can also act as sensors when considering the reflected signal as opposed to the transmitted signal. Surprisingly, most of the fiber sensing field relies on electrically-driven components for manipulating light and does not take advantage of all-optical signal processing capabilities.
In this thesis, we demonstrate the use of the nonlinear Kerr effect to improve aspects of both fiber point and distributed sensing. These sensing scenarios respectively refer to the use of a fiber as a single sensing element, and to the detection of external perturbations continuously along the entire length of the fiber. The sensing improvement are obtained by first inducing a sinusoidal modulation on the light before it experiences self-phase modulation in a nonlinear medium, leading to the generation of optical sidebands. By judiciously adjusting the peak power of the light and extracting a specific sideband, multiple all-optical signal processing functions are achieved.
First, high extinction ratio pulses can be generated by extracting a higher-order sideband, which allows for extending the sensing distance of distributed fiber-based sensors. The extinction ratio refers to the ratio between the pulse peak and pedestal powers. To quantify the generated extinction ratios, we develop a measurement technique based on a single-photon counter and measure a pulse exhibiting a 120 dB extinction ratio, which was originally created by an electro-optic modulator with a 20-dB extinction ratio.
Second, all-optical peak power stabilization can be achieved by extracting the first-order SPM-generated sideband. We utilize this technique to stabilize the peak power of an optical pulse sent to a distributed fiber sensor. We demonstrate that this stabilization technique allows for the detection of applied vibrations that would otherwise remain buried in the background noise.
Third, we demonstrate an all-optical scheme, based on sinusoidally-modulated light experiencing SPM, that enables the magnification of fluctuations in the peak power intensity of a pulsed signal. The light's peak power at the entrance of the nonlinear medium is adjusted to reach a power regime yielding a magnification factor of 2m+1, when extracting the mth-order SPM-generated sideband.
Finally, we propose a new sensing scheme composed of two all-optical signal processing steps to allow for the detection of environmental perturbations previously too small to be detected by a given intensity-based fiber sensor.
|
6 |
Investigation of optical properties of polymethines for potential application in all-optical signal processingKim, Hyeongeu 08 June 2015 (has links)
Demonstration of ultrafast all-optical signal processing (AOSP) using silicon as the active material has been limited by large two-photon absorption loss and long lifetimes of the resulting free carriers. For AOSP at speeds in the terahertz, an order of magnitude faster than that the fastest current electronic counterpart, a class of π-conjugated organic molecules called polymethines provides a promising alternative to silicon as they possess large third-order nonlinearities, and ultrafast polarization response to an incident field. The challenge in the application of polymethines as active nonlinear optical materials for AOSP is in translating their promising molecular properties into bulk material properties. The large linear polarizability and charged nature of the polymethines molecules strongly promote aggregation and phase-separation in solid blends, offsetting their advantageous molecular optical properties. In this work, polymethines’ resistance to deleterious spontaneous symmetry breaking and aggregation was enhanced by substitutions of metal- and chalcogen- containing terminal groups, and rigid steric groups above and below the π-conjugated plane of polymethine chain. The resulting polymethines/amorphous polycarbonate (APC) blend films demonstrated an unprecedentedly high two-photon figure-of-merit, |Re(χ(3))/Im(χ(3))| and low linear loss. The optical quality of the polymethines/APC films was also improved by replacing the commonly-used alkyl ammonium counterions with more polarizable aryl phosphonium counterions with moderate ground state dipole moment. The resulting dye-polymer blend films showed an enhanced near-infrared transparency while its magnitude of the third-order susceptibility, |χ(3)|, showed a good agreement with that extrapolated from the molecular third-order polarizability, γ. For facile integration of these promising organic materials into SOH, the substrate surface was functionalized using silane coupling chemistry for the reduction of surface energy mismatch between the polymer films and the waveguide containing substrates. The optical and SEM micrographs showed vastly improved coverage and infiltration of the microfeatures. Furthermore, to enable the precise engineering of waveguide cross-sectional dimensions for single-mode propagation in the organic cladding, the dispersion curves of the polymethines/polymer blends were generated using prism coupling and ellipsometry. The combined efforts in the development of molecules and materials discussed in the thesis have culminated into a successful identification and optimization of the polymethines dyes and their polymer blends for imminent demonstrations of on-chip AOSP at terahertz speed.
|
7 |
Mélange à quatre ondes multiple pour le traitement tout-optique du signal dans les fibres optiques non linéaires / Multiple four wave mixing for all-optical signal processing in nonlinear optical fibersBaillot, Maxime 15 December 2017 (has links)
Le mélange à quatre ondes est un effet non linéaire sensible à la phase qui suscite de nombreux intérêts dans le domaine de la génération de peignes de fréquences et du traitement tout optique du signal par exemple. Un peigne de fréquences peut en effet s'obtenir par effet de mélange à quatre ondes 1en cascade. Dans ce cas, un nombre N d'ondes interagissent entre elles via l'effet Kerr et la modélisation d'un tel processus doit tenir compte de tous les couplages possibles entre les ondes. Au cours de mes travaux de thèse, je me suis intéressé, dans un premier temps, à la modélisation du mélange à quatre ondes dit multiple pour lequel un nombre quelconque N d'ondes interagissent entre elles. J'ai proposé une formulation générale permettant d'identifier simplement tous les termes de mélange à quatre ondes issus de toutes les combinaisons possibles de couplage entre les ondes et leur désaccord de phase associé. J'ai validé cette approche en proposant une étude théorique et expérimentale d'un processus de mélange à quatre ondes multiple dans une fibre optique non linéaire. Dans une deuxième partie, j'ai proposé, grâce au modèle élaboré précédemment, une étude théorique du phénomène de conversion de fréquence sensible à la phase, permettant la décomposition des composantes en quadrature d'un signal optique. Dans la littérature, cette expérience fut démontrée initialement avec quatre ondes pompes et dans plusieurs types de composants non linéaires. J'ai pu démontrer, au cours de mes travaux, que trois pompes étaient suffisantes pour réaliser l'expérience et j'ai déterminé des relations analytiques simples permettant de choisir les paramètres expérimentaux (notamment l'amplitude et la phase des pompes) rendant possible la décomposition des composantes en quadrature d'un signal. J'ai validé cette étude par la démonstration expérimentale d'un convertisseur de fréquence sensible à la phase avec uniquement trois pompes et j'ai étudié théoriquement les effets de la dispersion chromatique sur les performances du convertisseur de fréquence. Enfin, dans une dernière partie, j'ai caractérisé des fibres optiques microstructurées en verre de chalcogénure fabriquées dans le cadre d'une collaboration avec Perfos, l'Institut des Sciences Chimiques de Rennes et SelenOptics. Dans ce cadre, j'ai mis en place un banc de mesure de la dispersion chromatique et du coefficient non linéaire des fibres optiques basé sur le mélange à quatre ondes. / Four-wave mixing is a phase-sensitive nonlinear effect that arouses interest, particularly in the fields of frequency comb generation and all-optical signal processing. As an example, frequency combs can be produced thanks to a cascaded four-wave mixing process. In this case, N waves can interact with each other through the optical Kerr effect, and one has to take into account all the possible interactions to be able to adequately model the process. During my PhD thesis, I was interested in modeling the so-called multiple four-wave mixing process, in which any number N of waves can interact with each other. I proposed a general formulation that allows to easily identify all the four-wave mixing terms originating from all the possible combinations of wave coupling and their associated phase-mismatch terms. I validated this approach through the theoretical and experimental study of a multiple four-wave mixing process in a nonlinear optical fiber. Thanks to the developed model, I then proposed a theoretical study of the phase-sensitive frequency conversion process, which permits to demultiplex the quadrature components of an optical signal. In the literature, this process was first experimentally demonstrated in several nonlinear devices using four pump waves. I demonstrated that only three pump waves were required to successfully perform the experiment, and I determined the simple analytical relations from which the adequate experimental parameters (namely, the amplitudes and phases of the pump waves) could be deduced. I finally validated this study by experimentally demonstrating a phase-sensitive frequency conversion process with only three pump waves, and I theoretically studied the influence of chromatic dispersion on the performance of this frequency converter. Finally, I characterized some chalcogenide microstructured optical fibers that were fabricated in the framework of a collaboration with Perfos, the Institut des Sciences Chimiques de Rennes, and SelenOptics. I set up a test bench based on the four-wave mixing process in order to measure the chromatic dispersion and nonlinear coefficient of some optical fibers.
|
Page generated in 0.0733 seconds