• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 36
  • 36
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effect of microalloying on microstructure and hot working behavior for AZ31 based magnesium alloy

Shang, Lihong. January 2008 (has links)
No description available.
22

Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys

Mridha, Sanghita 05 1900 (has links)
Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the interface characteristics were identified. The structure evolution of three multi-principal element alloys were investigated namely CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi. All three alloys formed a single-phase FCC structure in as-cast, cold worked and recrystallized state. No secondary phases precipitated after prolonged heat treatment or mechanical working. The multi-principal element alloys showed less strain gradient plasticity compared to pure metals like Ni during nano-indentation. This was attributed to the highly distorted lattice which resulted in lesser density of geometrically necessary dislocations (GNDs). Dislocation nucleation was studied by low load indentation along with the evaluation of activation volume and activation energy. This was done using a statistical approach of analyzing the "pop-in" load marking incipient plasticity. The strain rate sensitivity of nanocrystalline Al0.1CoCrFeNi alloy was determined by in situ compression of nano-pillars in a Pico-indenter. The nanocrystalline alloy demonstrated a yield strength of ~ 2.4 GPa, ten times greater than its coarse grained counterpart. The nanocrystalline alloy exhibited high strain rate sensitivity index of 0.043 and activation volume of 5b3 suggesting grain boundary dislocation nucleation.
23

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Hwang, Junyeon 05 1900 (has links)
Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the low-Si 319 type aluminum alloys are also presented with sample preparation and analysis condition of TEM and 3DAP tomography.
24

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

Komarasamy, Mageshwari 12 1900 (has links)
The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain size did not affect the dislocation mechanisms and kinetics. This further bolstered the hypothesis. The second part deals with deformation characteristics of Al-Mg-Sc alloy. The microstructure obtained from the severe plastic deformation (SPD) techniques differ in dislocation density, grain/cell size, and in the grain boundary character distribution. Therefore, it is vital to understand the deformation behavior of the UFG materials produced by various SPD techniques, as the microstructural features basically control the deformation mechanisms. In this study, a detailed analysis was made to understand the deformation mechanisms operative in various regimes of a stress-strain in UFG Al-Mg-Sc alloy produced via friction stir processing. The stress-strain curves exhibited serrations from the onset of yielding to the point of sample failure. The serration amplitude and frequency was higher in UFG material as compared to CG material. Furthermore, the microstructural features that result in the serrated flow were investigated along with the avalanche characteristics. The presence of both ultrafine grains and Al3Sc precipitates were the necessary conditions to reach the critical stress required to push the grain boundary into a critical state to set off an avalanche. The microstructural conditions that did not satisfy both the requirements did not exhibit deep serrations.
25

Microstructure And Texture Evolution And Its Effect On Mechanical Properties In Dilute Magnesium Based AZ21 Alloy

Abdul Azeem, Mohd. January 2006 (has links)
Dilute Mg alloys are exclusively identified for wrought structural applications in automotive industry. Any improvement in mechanical properties of alloys is possible only by grain size refinement and by the development of suitable texture. The grain size, grain size anisotropy and texture in these alloys affect the compatibility stresses in a very complex manner. To launch a full scale study towards understanding the complex deformation mechanisms operating in these alloys, it is necessary to understand the effect of grain size and texture on the mechanical behavior of Mg alloys in a broad or semi-quantitative manner first. Current literature lacks such broad study. In this present study, the effect of grain size, grain size anisotropy and texture evolution on the mechanical properties are examined in order to develop an understanding of the deformation mechanism that control the mechanical properties of a dilute conventionally extruded Mg alloy, AZ21. The approach adopted was to first study the microstructure and texture evolution in this conventionally extruded alloy. Since the grain sizes in these alloys vary over a wide range, it is hence necessary to study the microstructure evolution in a highly quantitative manner. In understanding texture, the present study is only limited to qualitatively evaluating the evolution of fibre component of texture using X-Ray Diffraction spectra. For truly quantitative microstructure evolution results in materials were grains sizes are spread over a wide range, it is critical to study a statistically enough no. of grains. Hence to avoid any sampling error, large montages (about 0.3 sq. mm) were constructed out of a series of high resolution images captured using an optical microscope. The montages so constructed are subjected to extensive image enhancement and various other operations are performed to convert these coloured to binary montages. Information like grain size, diameter etc., can be easily extracted from these binary montages and used for further analysis. Fibre texture in these conventionally extruded dilute Mg alloys generally develops due to alignment of basal planes along the direction of extrusion. The Critical Resolved Shear Stress for basal slip is very low when compared to that of non-basal planes. And also since there are very limited primary slip systems in these dilute Mg alloys, the development of strong fibre texture drastically changes the compatibility stresses and hence the mechanical properties . To broadly study the effect of microstructure-texture on mechanical proerties, after post extrusion annealing, heat treatments representing typical microstructure-texture combinations were identified. Effect of each microstructure-texture combination on the tensile and completely reversed cyclic fatigue properties are studied and qualitatively interpreted. The fibre texture showed pronounced effect on tensile ductility but it hardly affected the yield strength. With just 10% reduction in BPI, the ductility reduced by about 50%. A small change in average grain size did not alter the yield strength. Unlike tensile ductility, fatigue endurance stress was not altered drastically by the change in grain size or texture. But there appeared to be a significant effect of residual stress. In ending, a small change in microstructure-texture combination in these conventionally extruded alloys has a pronounced effect on ductility or in other words plastic properties. But a it has minimal effect on yield strength and fatigue endurance stress.
26

Mechanical Behavior Of B-Modified Ti-6Al-4V Alloys

Sen, Indrani 01 1900 (has links) (PDF)
Titanium alloys are important engineering alloys that are extensively used in various industries. This is due to their unique combination of mechanical and physical properties such as low density combined with high strength and toughness as well as outstanding corrosion resistance. An additional benefit associated with Ti alloys, in general, is that their properties are relatively temperature-insensitive between cryogenic temperature and ~500 °C. Amongst the Ti alloys, Ti-6Al-4V (referred as Ti64) is a widely used alloy. Conventionally cast Ti64 possesses classical Widmanstätten microstructure of (hcp) α and (bcc) β phases. However this microstructure suffers from large prior β grain size, which tends be in the order of a few mm. Such large grain sizes are associated with poor processability as well as inferior mechanical performance. The necessity to break this coarse as-cast microstructure down, through several successive thermo-mechanical processing steps, adds considerably to the cost of finished Ti alloy products, making them expensive vis-à-vis other competing alloys. The addition of small amount of B (~0.1%) to Ti64 alloys, on the other hand reduces the cast grain size from couple of mm to ~200 µm. Moreover, addition of B to Ti alloys produces the intermetallic TiB needles during solidification by an in situ chemical reaction. The overall objective of this work is to gain insights into the role of microstructural modifications, induced by B addition to Ti64, on the mechanical performance of the alloys, in particular the room temperature damage tolerance (fracture toughness and fatigue crack growth) characteristics. The key questions we seek to answer through this study are the following: (a) What role does the microstructural refinement plays on the quasistatic as well as fracture and fatigue behavior and high temperature deformability of the alloys? (c) A hierarchy of microstructural length scales exist in Ti alloys. These are the lath, colony and grain sizes. Which of these microstructural parameters control the mechanical performance of the alloy? (b) What (possibly detrimental) role, if any, do the TiB needles play in influencing the mechanical performance of Ti64 alloys? This is because TiB being much stiffer, strain incompatibility between the matrix and the TiB phase could lead to easy nucleation of cracks during cyclic loading as well as can pose problems during dynamic deformation. (d) What is the optimum amount of B that can be added to Ti64 such that the most desirable combination of properties can be achieved? Five B-modified Ti64 alloys with B content varying from 0.0 to 0.55 wt.% were utilised to answer the above questions. Marked prior β grain size reduction was noted with up to 0.1 wt.% B addition. Simultaneous refinement of α/β colony size has also been observed. The addition of B to Ti64, on the other hand increases the α lath size. The TiB needles that form in-situ during casting are arranged in a necklace like structure surrounding the grain boundaries for higher B added Ti64 alloys. An anomalous enhancement in elastic modulus, E, of the alloy with only 0.04 wt.% B to Ti64 was found. E has been found to follow the same trend of variation with B content at higher temperatures (up to 600 °C) as well. Nanoindentation experiments were conducted to evaluate the moduli of the various phases present in the microstructure and then rationalize the experimental trends within the framework of approximate models. Marginal but continuous enhancement in strength of the alloys with B addition was observed. It correlates well with the grain size refinement according to Hall-Petch relationship. Ductility on the other hand increases initially with up to 0.1 wt.% B addition followed by a reduction. While the former is due to the microstructural refinement, the latter is due to the presence of significant amount of brittle TiB phase. Room temperature fracture toughness decreases with B addition to Ti64. Such reduction in fracture toughness with the refinement of prior β grain size has been justified with Ritchie-Knott-Rice model. Contradictory roles of microstructural refinement have been observed for notched and un-notched fatigue. While reduction in length scale has a negative role in crack propagation, it enhances the fatigue strength of the alloy owing to better resistance to fatigue crack initiation. TiB needles on the other hand act as sites for crack initiation and hence limit the enhancement in fatigue strength of alloys with 0.30 and 0.55 wt.% B. An investigation of the high temperature deformability of the alloys has been performed over a wide range of temperature (within the two phase α+β regime) and strain rate windows. Results show that microstructural refinement does not alter the high temperature deformation characteristics as well as optimum processing conditions of the alloys. TiB needles, however act as sites for instability owing to differences in compressibility between the matrix and the whisker phase. In summary, this study suggests that the addition of ~0.1 wt.% B to Ti64 can lead to the elimination of certain thermo-mechanical processing steps that are otherwise necessary for breaking the as-cast structure down and hence make finished Ti components more affordable. In addition, it leads to marginal enhancement in the quasi-static properties and significant benefits in terms of high cycle fatigue performance.
27

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Gopagoni, Sundeep 12 1900 (has links)
Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
28

Influence of High Strain Rate Compression on Microstructure and Phase Transformation of NiTi Shape Memory Alloys

Qiu, Ying 05 1900 (has links)
Since NiTi shape memory alloy (SMA) was discovered in the early 1960s, great progress has been made in understanding the properties and mechanisms of NiTi SMA and in developing associated products. For several decades, most of the scientific research and industrial interests on NiTi SMA has focused on its superelastic applications in the biomedical field and shape memory based “smart” devices, which involves the low strain rate (around 0.001 s^-1) response of NiTi SMA. Due to either stress-induced martensite phase transformation or stress induced martensite variant reorientation under the applied load, NiTi SMA has exhibited a high damping capacity in both austenitic and martensitic phase. Recently, there has been an increasing interest in exploitation of the high damping capacity of NiTi SMA to develop high strain rate related applications such as seismic damping elements and energy absorbing devices. However, a systematic study on the influence of strain, strain rate and temperature on the mechanical properties, phase transformation, microstructure and crystal structure is still limited, which leads to the difficulties in the design of products being subjected to high strain rate loading conditions. The four main objectives of the current research are: (1) achieve the single loading and the control of strain, constant strain rate and temperature in high strain rate compression tests of NiTi SMA specimens using Kolsky (split Hopkinson) compression bar; (2) explore the high strain rate compressive responses of NiTi SMA specimens as a function of strain (1.4%, 1.8%, 3.0%, 4.8%, and 9.6%), strain rate (400, 800 and 1200 s^-1), and temperature (room temperature (294 K) and 373 K); (3) characterize and compare the microstructure, phase transformation and crystal structure of NiTi SMAs before and after high strain rate compression; and (4) correlate high strain rate deformation with the changes of microstructure, phase transformation characteristics and crystal structure. Based on the results from this study, it was found that: (1) the compressive stress strain curves of martensitic NiTi SMAs under quasi-static loading conditions are different from those under high strain rate loading conditions, where higher strain hardening was observed; (2) the critical stress and stress plateau of martensitic NiTi SMAs are sensitive to the strain rate and temperature, especially at 373K, which results from the interplay between strain hardening and thermal softening; (3) the microstructure of martensitic NiTi SMA has changed with increasing strain rate at room temperature (294 K), resulting in the reduction in the area of ordered martensite region, while that area increases after deformation at elevated temperature (373K); (4) the phase transformation characteristic temperatures are more sensitive to deformation strain than strain rate; (5) the preferred crystal plane of martensitic NiTi SMA has changed from (11 ̅1)M before compression to (111)M after compression at room temperature (294 K), while the preferred plane remains exactly the same for martensitic NiTi SMA before and after compression at 373 K. Lastly, dynamic recovery and recrystallization are also observed after deformation of martensitic NiTi SMA at 373K.
29

Studium mikrostruktury a mechanických vlastností jemnozrnných hořčíkových slitin připravených intenzivní plastickou deformací / Microstructure and mechanical properties study of the finegrained magnesium alloys processed by severe plastic deformation

Šašek, Stanislav January 2021 (has links)
Two magnesium alloys (Mg-4Y-4Gd-2Ca and Mg-2Y-2Gd-1Ca) with high ignition tem- perature were successfully processed by extrusion. Mg-2Y-2Gd-1Ca alloy was addition- ally processed by equal channel angular pressing (ECAP) to achieve ultrafine-grained microstructure. The effect of extrusion parameters on fraction of recrystallized grains, grain size, and texture was revealed by EBSD analysis. The presence of Mg2Ca, REH2 and Mg5RE secondary phases was proven by SEM and TEM. Microstructural condition including distribution and morphology of secondary phase par- ticles directly affected the mechanical properties. Yield tensile stress exceeding 200 MPa was achieved in each condition. Large non-recrystallized grains with strong {10̄10} tex- ture resulted in a significant anisotropy in mechanical properties. Processing by ECAP led to a homogeneous microstructure with a mean grain size below 1 µm. ECAP condition showed superior mechanical properties with a low anisotropy. The developed and analysed microstructural condition resulted in favourable mechanical properties. The studied alloys are therefore promising for the application in aerospace industry. 1
30

Evolution Of Texture And Microstructure In Some NiTi Based Alloys And Their Impact On Shape Memory Behavior

Suresh, K S 07 1900 (has links) (PDF)
NiTi based shape memory alloys (SMA) cover most of the commercially produced shape memory devices and components. The reversible martensitic transformation between the phases B2 (austenite) and B19′ (martensite) is responsible for the shape memory effect in these alloys. The amount of strain which can be regained after a permanent deformation through thermal activation, known as the recoverable strain, is a strong function of crystallographic texture and microstructure. Texture influences the activation of a specific martensite variant during stress induced martensitic (SIM) transformation and also the re-orientation of twinned variants during further deformation. The variant selection decides the amount of recoverable strain. Since the NiTi based shape memory alloys inevitably undergo thermo-mechanical processing in the course of component design, the consequent evolution of texture and microstructure regulate the shape memory behavior. The present thesis is aimed to address this issue in some NiTi alloys that are technologically important for different applications, namely a binary Ni-rich NiTi alloy, a copper containing NiTi alloy and a hafnium containing NiTi alloy. The Ni rich NiTi alloy displays pseudoelastic behavior that can be used for couplings, the NiTiCu alloy provides a controlled thermal hysteresis suitable for actuator applications and the NiTiHf alloy can be used for high temperature applications. The first Chapter of the thesis provides a detailed overview of the existing knowledge related to evolution of microstructure and texture during processing, the transformation texture and its role on the shape memory behavior in NiTi alloys. The second chapter includes the experimental procedure followed to generate different textures, namely unidirectional and cross rolling with and without a subsequent annealing and also the details of the techniques used to characterize the structure, microstructure, texture and mechanical properties. The evolution of texture during thermo-mechanical processing of a Ni rich NiTi alloy and its impact on shape memory behavior is addressed in Chapter 3. The two modes of rolling employed at higher temperature led to the formation of different textures. The texture of unidirectionally rolled samples was characterized by a strong <111>||ND fiber, while a strong Goss {100}<110> component along with <111>||ND fiber was observed in the texture of the cross rolled samples. Annealing of the unidirectionally rolled samples generated a strong <100>||ND fiber, and a weak <111>||ND fiber was observed for the cross rolled samples. Microtexture analyses indicated that dynamically recrystallized grains had significantly different texture compared to the statically annealed material. One of the salient features of this study is the analysis of different twin boundaries with coincident site lattice (CSL) relations that has been observed in the hot rolled material. The origin of these twins has been attributed to deformation. The evolution of twin boundaries with CSL relation has strong influence on texture formation. A few of the important texture components have been found to have CSL relation amongst them. The origin of different texture components were found using intra-grain misorientation parameters. In-situ transformation studies in a scanning electron microscope have confirmed the formation of different types of twins at very low amount of strain in the Ni rich NiTi alloy. A Schmid factor based criterion was used to identify the activation of a particular variant. Trace analysis of the surface relief due to SIM transformation was utilized to confirm the theoretically predicted variant. Schmid criterion has been found to be valid in all the cases. Modulus variation with temperature and strain was studied using dynamical mechanical analysis. Microstructural changes during thermal and thermo-mechanical cycling revealed higher orientation gradient along grain boundaries compared to grain interior. The compatibility condition at the grain boundaries were attributed to higher misorientation development. Misorientation development during cycling loading process is also found to be a strong function of texture. Processing condition and texture has a strong influence on the recoverable strain. Particularly, the strength of <111>||ND fiber is influential in deciding the recoverable strain. Study of microstructure and texture evolution in the TiNiCu SMA and subsequent study on its impact on recoverable strain is presented in Chapter 4. Convincing evidences for the mechanisms operating during different dynamic restoration processes have been presented through microstructural investigation. Texture analysis of the austenite phase showed the formation of <111>||ND fiber. Despite the weakening of texture at larger strain, strength of certain deformation texture components like S {123}<634> and Cu {112}<111> increased, which suggested that texture evolution in TiNiCu alloy deviates from the texture of binary NiTi at large strains. Transformation texture analysis was carried out through electron back scattered diffraction technique, using an in-situ heating stage. The analysis of the results showed predominant activation of <011> type II as well as {11 1 } type I twins. A comparison of martensite and austenite pole figures indicated strong variant selection during phase transformation. Like the binary NiTi alloy, cross rolling of TiNiCu alloy also showed ample changes in the texture of martensite phase through the formation of different texture components. Annealing of both unidirectionally and cross rolled samples led to the weakening of texture. The change in volume fraction of Ti2NiCu precipitates, resulting from different processing conditions, influenced the transformation temperature. In this case also, texture and large intra-grain misorientation governed the recoverable strain. Chapter 5 is dedicated to the study of high temperature NiTiHf alloy. X-ray diffraction and differential scanning calorimetric studies confirmed a two step martensitic transformation, a B19` monoclinic and rhombohedral R-phase martensite in the studied alloy (Ni49.4Ti38.6Hf12). Microstructural investigations showed the formation of dendritic (Ti,Hf)2Ni precipitates along the grain boundary. Evolution of R-phase martensite was always observed along with (Ti,Hf)2Ni precipitates, irrespective of the processing condition. Dissolution of (Ti,Hf)2Ni precipitates by solution treatment suppressed the R phase formation. Strong texture of R-phase martensite confirmed variant selection during martensitic transformation. On the contrary, texture of B19` martensite was always weak, suggesting no preference for variant selection. Rolled material with a relatively strong texture exhibited higher recoverable strain compared to annealed material. Finally, all the significant outcomes of the present investigation are summarized in Chapter 6. Based on the conclusions, suggestions for future work have been mentioned.

Page generated in 0.0769 seconds