• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 27
  • 27
  • 27
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Preparation and characterization of bulk amorphous and nanostructured iron-40 nickel-40 phosphorus-14 boron-6 alloys. / Preparation and characterization of bulk amorphous and nanostructural Fe40Ni40P14B6 alloys / CUHK electronic theses & dissertations collection

January 2002 (has links)
"Apr 2002." / The numerals in title is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
22

Microstructural banding in thermally and mechanically processed titanium 6242

Kansal, Utkarsh 21 January 1992 (has links)
Ti-6Al-2Sn-4Zr-2Mo-0.1Si specimens were shaped by repeated cycles of heating (to 954 °C) and hammer or press forging followed by a solution anneal that varied from 968 to 998 °C. The coupons were originally extracted from billets forged below the beta trans us ( 1009 °C) and slow cooled to ambient temperature. Macroscopic and microstructural banding is observed in some forged and solution annealed coupons, that consists of regions of elongated primary alpha. More significant banding is observed subsequent to annealing at lower temperatures (968 °C), whereas much less microstructural banding is present after annealing at higher temperatures (998 °C). About the same level of banding is observed in hammer forged and press forged coupons. The observation of these bands is significant since they may lead to inhomogeneous mechanical properties. Specifically, at least some types of banding are reported to affect the high temperature creep properties of this alloy. The origin of these bands was therefore researched. Classically, banding in Ti-6242-0.1Si has been regarded as a result of adiabatic shear, chill zone formation or compositional inhomogeneity. High and low magnification metallography, electron microprobe analysis and microhardness tests were performed on forged and annealed specimens in this investigation. The composition inside the bands appears identical to that outside of the bands. The fraction of primary alpha is also found to be identical. The bands have higher microhardness. These results suggest that the bands are not related to composition gradients. The bands also do not appear to be a result of adiabatic shear or other localized deformation. The bands of this study appear to originate from the elongated primary alpha microstructure of the forged billet (from which test coupons were extracted). The deformation of the extracted coupon may be neither fully homogeneous nor sufficiently substantial and the coupon is only partly statically restored after a solution anneal. Areas not fully restored appear as "bands" with elongated primary alpha, that are remnant of the starting billet microstructure. Therefore, a source of banding in Ti-6242-0.1Si alloy, additional to the classic sources, is evident. This type of banding is likely removed by relatively high solution treatment temperatures and perhaps greater plastic deformation during forging. / Graduation date: 1992
23

Thermomechanical fatigue of Mar-M247: extension of a unified constitutive and life model to higher temperatures

Brindley, Kyle A. 22 May 2014 (has links)
The goal of this work is to establish a life prediction methodology for thermomechanical loading of the Ni-base superalloy Mar-M247 over a larger temperature range than previous work. The work presented in this thesis extends the predictive capability of the Sehitoglu-Boismier unified thermo-viscoplasticity constitutive model and thermomechanical life model from a maximum temperature of 871C to a maximum temperature of 1038C. The constitutive model, which is suitable for predicting stress-strain history under thermomechanical loading, is adapted and calibrated using the response from isothermal cyclic experiments conducted at temperatures from 500C to 1038C at different strain rates with and without dwells. In the constitutive model, the flow rule function and parameters as well as the temperature dependence of the evolution equation for kinematic hardening are established. In the elevated temperature regime, creep and stress relaxation are critical behaviors captured by the constitutive model. The life model accounts for fatigue, creep, and environmental-fatigue damage under both isothermal and thermomechanical fatigue. At elevated temperatures, the damage terms must be calibrated to account for thermally activated damage mechanisms which change with increasing temperature. At lower temperatures and higher strain rates, fatigue damage dominates life prediction, while at higher temperatures and slower strain rates, environmental-fatigue and creep damage dominate life prediction. Under thermomechanical loading, both environmental-fatigue and creep damage depend strongly on the relative phasing of the thermal and mechanical strain rates, with environmental-fatigue damage dominating during out-of-phase thermomechanical loading and creep damage dominating in-phase thermomechanical loading. The coarse-grained polycrystalline microstructure of the alloy studied causes a significant variation in the elastic response, which can be linked to the crystallographic orientation of the large grains. This variation in the elastic response presents difficulties for both the constitutive and life models, which depend upon the assumption of an isotropic material. The extreme effects of a large grained microstructure on the life predictions is demonstrated, and a suitable modeling framework is proposed to account for these effects in future work.
24

Thermodynamics Of Alloys With Strong Interactions

Haque, Sheikh Manjura. 10 1900 (has links) (PDF)
No description available.
25

Thermo-mechanical fatigue crack growth of a polycrystalline superalloy

Adair, Benjamin Scott 23 May 2011 (has links)
A study was done to determine the temperature and load interaction effects on the fatigue crack growth rate of polycrystalline superalloy IN100. Temperature interaction testing was performed by cycling between 316°C and 649°C in blocks of 1, 10 and 100 cycles. Load interaction testing in the form of single overloads was performed at 316°C and 649°C. After compiling a database of constant temperature, constant amplitude FCGR data for IN100, fatigue crack growth predictions assuming no load or temperature interactions were made. Experimental fatigue crack propagation data was then compared and contrasted with these predictions. Through the aid of scanning electron microscopy the fracture mechanisms observed during interaction testing were compared with the mechanisms present during constant temperature, constant amplitude testing. One block alternating temperature interaction testing grew significantly faster than the non-interaction prediction, while ten block alternating temperature interaction testing also grew faster but not to the same extent. One hundred block alternating testing grew slower than non-interaction predictions. It was found that as the number of alternating temperature cycles increased, changes in the gamma prime morphology (and hence deformation mode) caused changes in the environmental interactions thus demonstrating the sensitivity of the environmental interaction on the details of the deformation mode. SEM fractography was used to show that at low alternating cycles, 316°C crack growth was accelerated due to crack tip embrittlement caused by 649°C cycling. At higher alternating cycles the 316°C cycling quickly grew through the embrittled crack tip but then grew slower than expected due to the possible formation of Kear-Wilsdorf locks at 649°C. Overload interaction testing led to full crack retardation at 2.0x overloads for both 316°C and 649°C testing. 1.6x overloading at both temperatures led to retarded crack growth whereas 1.3x overloads at 649°C created accelerated crack growth and at 316°C the crack growth was retarded.
26

Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC

Kupkovits, Robert Anthony 08 April 2009 (has links)
Due to the extreme operating conditions present in the combustion sections of gas turbines, designers have relied heavily on specialized engineering materials. For blades, which must retain substantial strength and resistance to fatigue, creep, and corrosion at high temperatures, directionally-solidified (DS) nickel-base superalloys have been used extensively. Complex thermomechanical loading histories makes life prediction for such components difficult and subjective. Costly product inspection and refurbishment, as well as capital expense required in turbine forced outage situations, are significant drains on the resources of turbine producers. This places a premium on accurate endurance prediction as the foundation of viable long-term service contracts with customers. In working towards that end, this work characterizes the behavior of the blade material CM247LC DS subjected to a variety of in-phase (IP) and out-of phase (OP) loading cycles in the presence of notch stress concentrations. The material response to multiaxial notch effects, highly anisotropic material behavior, time-dependent deformation, and waveform and temperature cycle characteristics is presented. The active damage mechanisms influencing crack initiation are identified through extensive microscopy as a function of these parameters. This study consisted of an experimental phase as well as a numerical modeling phase. The first involved conducting high temperature thermomechanical fatigue (TMF) tests on both smooth and notched round-bar specimens to compile experimental results. Tests were conducted on longitudinal and transverse material grain orientations. Damage is characterized and conclusions drawn in light of fractography and microscopy. The influences of microstructure morphology and environmental effects on crack initiation are discussed. The modeling phase utilized various finite element (FE) simulations. These included an anisotropic-elastic model to capture the purely elastic notch response, and a continuum-based crystal visco-plastic model developed specifically to compute the material response of a DS Ni-base superalloy based on microstructure and orientation dependencies. These FE simulations were performed to predict and validate experimental results, as well as identify the manifestation of damage mechanisms resulting from thermomechanical fatigue. Finally, life predictions using simple and complex analytical modeling methods are discussed for predicting component life at various stages of the design process.
27

Radiation field shaping through low temperature thermal-spray in radiotheraphy

Van der Walt, Jacobus Gert January 2009 (has links)
Thesis (D. Tech.) -- Central University of Technology, Free State, 2009 / Superficial cancerous lesions are commonly treated through low energy X-ray or electron radiation in radiotherapy. The treatment units that produce the radiation are equipped with square, rectangular and round applicators of different sizes. These applicators attach to the treatment units and define the radiation field size applied during treatment. An applicator is chosen to fit the shape of the cancerous lesion on the patient as closely as possible. Since cancerous lesions are irregular in shape, there will always be an area of healthy tissue between the edge of the lesion and the edge of the standard field shape. This healthy tissue will be irradiated along with the lesion during treatment which is undesirable since the cancer wound heals through reparative growth of the surrounding healthy tissue after treatment. Traditional techniques that were developed to shield this healthy tissue and thus shape the radiation field to the shape of the lesion present various shortcomings. This study introduces a new thermal-spray process for producing radiation field shaping shields which overcomes most of the shortcomings encountered with the traditional field shaping techniques. Since none of the commercially available thermal-spray equipment could be used to produce field shaping shields, new thermal-spray equipment was designed and fabricated tailor made to the application. Different techniques to determine the contours of the treatment area on the patient were investigated. These included a patient contact technique using a plaster bandage impression and a non-contact technique using 3D laser scanning. From the plaster bandage impression a plaster model can be produced onto which a high density low melt material such as Wood’ s alloy can be thermally sprayed to produce a field shaping mask. A model can also be produced from the 3D laser scanning data through laser sintering (LS) in nylon polyamide powder or through computer numerical controlled (CNC) milling in a block of low density polyurethane. The thermal-spray technique was evaluated by comparing the field shaping ability of radiation shields produced through the technique to the field shaping ability of shields produced through the traditional techniques. Radiographic film was used for this purpose and the results are presented in the form of isodensity charts. The required thicknesses of thermal-sprayed field shaping masks to shield radiation of various energies were also determined. The thicknesses were determined through radiation transmission measurements of known thicknesses of sprayed sheets of Wood’ s alloy. X-ray imaging showed that there were no defects present within thermal-sprayed layers of Wood’ s alloy that may negatively affect the shielding ability of masks produced through the technique.

Page generated in 0.0912 seconds