• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Postcolonial planning : the alternative planning group and the transformation of social planning in Toronto at the turn of the 21st century /

Viswanathan, Leela. January 2007 (has links)
Thesis (Ph.D.)--York University, 2007. Graduate Programme in Environmental Studies. / Typescript. Includes bibliographical references (leaves 216-253). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR29535
2

Collective Utility of Exchanging Treated Sewage Effluent for Irrigation and Mining Water

Ko, Stephen C., Duckstein, Lucien 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The concept of collective utility is applied to a case study of alternative water resource utilization by providing a basis for comparing alternative uses of resources from the viewpoint of aggregate welfare. The exchange of sewage effluent for groundwater used by irrigation farmers, and the exchange of sewage effluent for groundwater used by processing and milling miners in Tucson, Arizona, are given as examples. Reviewed are collective utility concepts, case problems, definitions of problems, formulation of the model, and marginal change of collective utility. The first case has a collective utility of $800,500-g, where g represents unquantifiable factors, such as the reduction in quality of living due to the odor if solid waste exchanges. The second case has a collective utility of $175,000. Since it is likely that g will be on the order of $1 million per year, the first exchange is preferable to the second.
3

Application of Bayesian Decision Theory in Well Field Design

Bostock, Charles A., Davis, Donald R. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / Bayesian decision theory is a method for comparing expected utilities of alternative actions given various possible states of nature. The method treats uncertainty as to the true state of nature by determining the expected utility of each action in terms of the probabilities of the various possible states. The decision rule is to choose the action having the best expected utility. This paper illustrates an application of Bayesian decision theory in a well field design problem where a decision had to be made regarding capacity-density combination for wells located in an extensive uniform grid. The uncertainty lay in anticipating the frequencies of transmissivity values among the wells.
4

Wastewater Effluent - An Element of Total Water Resource Planning

Goff, J. D. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Wastewater reuse options for the Phoenix area include: agricultural irrigation, fish and wildlife enhancement, ground water recharge, industrial processing and coiling water, recreation, cooling water for power generation stations, and exchanging effluent for additional water supplies. Consideration is given to effluent reuse potential as a commodity to exchange for water suitable for domestic water supply. This exchange would result in yet additional reuses of the water as title to the effluent could be assured by contracts and agreements.
5

Economic Alternatives in Solving the U. S.-Mexico Colorado River Water Salinity Problem (invited)

Martin, William E. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / A proposed desalting plant is an engineering solution to the effects of a problem which could have been avoided and even now could be reduced on the farm. Water costing $125 per acre-foot will be delivered to Mexico to grow wheat, cotton, garden crops, alfalfa and safflower, of which the average value added per acre-foot was estimated at $80 for cotton and garden crops and $14 for wheat, alfalfa and safflower. The U.S. government, instead of building the desalting complex, could accomplish its purpose just as well by paying each farmer in the Yuma area, in return for the farmers reducing their drainage flow by whatever method they see fit, $114 per acre per year for the next 50 years. With proper management on the farm, the costs of managing salinity need not be high.
6

United States-Mexico Water Agreements and Related Water Use in Mexicali Valley: A Summary

DeCook, K. J. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / A summary is given of interrelated, technical and institutional events concerning the Colorado River which took place between the United States and Mexico from 1849 to 1974 with emphasis on the 1961-1974 period. Until the treaty of 1944, Mexico had had no guarantee of a specific annual quantity of water, but in the years after 1945, when a guarantee of 1.5 million acre-feet per year was established, more than that amount was available for use. Salinity problems arose, and in 1965 an agreement for a 5-year plan for alleviating the technical and political difficulties surrounding the salinity question was made. In 1973 it was agreed that the United States would build, within approximately 5 years, a facility for desalting the saline drainage water entering Mexico. Fulfillment of the technical provisions for this agreement requires, in any event, the timely provision of federal funds to construct and operate the physical works. The several states should receive assurance that their rights and those of their respective water users will not be impaired within the legal operation of the agreement.
7

Metropolitan Operated District for Sewage Effluent - Irrigation Water Exchange

Cluff, C. Brent, DeCook, K. James 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / A plan for the reuse of sewage effluent is proposed for the city of Tucson, Arizona. Several kinds of use would be possible, but utilization for irrigation of existing farmland in the Avra-Marana area seems particularly attractive for several reasons: (1) conveyance can be accomplished by gravity flow, (2) no tertiary treatment is required for the presently grown crops, (3) the nutrients in the effluent would be better used, and (4) effluent use would reduce the pumpage of high quality groundwater, conserving it for municipal or other uses. An exchange of wastewater for groundwater for use in the city system is seen as a good alternative to the present practice of the city purchasing farmland in Avra valley in order to acquire the groundwater for conveyance to the Tucson basin. Objectives to maximize the quantity and efficiency of wastewater use may not appear compatible with the profit maximization motive of the individual farmer, and suitable provisions will have to be written into wastewater sales agreements to assure coordination between user and supplier.
8

Salinity Control Planning in the Colorado River System (invited)

Maletic, John T. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / In the lower reaches of the Colorado River, damages from the increase in salinity to U.S. water users are now estimated to be about 53 million dollars per year and will increase to about 124 million dollars per year by the year 2000 if no salinity control measures are taken. Physical, legal, economic, and institutional aspects of the salinity problem and proposed actions to mesh salinity control with a total water management plan for the basin are discussed. A scheme is presented for planning under the Colorado River water quality improvement program. Recent legislative action is also discussed which provides control plans to improve the water quality delivered to Mexico as well as upper basin water users. These efforts now under study will assure the continued, full utility of Colorado River water to U.S. users and Mexico. However, more extensive development of the basin's natural resources puts new emphasis on total resources management through improved water and land use planning to conserve a most precious western resource - water.
9

Land Treatment for Primary Sewage Effluent: Water and Energy Conservation

Rice, R. C., Gilbert, R. G. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Land treatment of secondary municipal wastewater is an economical and aesthetic method of upgrading water quality, if hydrologic and geologic conditions are favorable. Costly conventional secondary treatment, which requires large quantities of electrical energy, can be bypassed by applying the primary effluent directly to the land. Soil- denitrifying bacteria use the organic carbon in the primary effluent as an energy source for biodenitrification and nitrogen removal. Laboratory and field studies indicated the quality of renovated wastewater meets standards for unrestricted irrigation and recreational uses. Considerable savings, both in capital and energy costs, can be realized by land treatment of primary effluent.
10

Rainfall-Runoff Relationships for a Mountain Watershed in Southern Arizona

Myhrman, M., Cluff, C. B., Putnam, F. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / A network of rain gauges and two recorder -equipped flumes were installed near the head of Cottonwood Canyon on Mt. Hopkins in the Santa Rita Mountains pursuant to a water development study for the Smithsonian Institution's Mt. Hopkins Astrophysical Observatory. The watershed is generally characterized by steep slopes, a dense evergreen woodland cover predominated by several species of oaks, isolated bedrock exposures and talus chutes. The watershed for the lower flume site comprises about 145 acres (58.60 ha) with an elevation range from about 6775 to 8580 feet (2,065 to 2,615 m). Rainfall-runoff measurements were made during the summer and fall of 1977. A runoff efficiency of 0.56 percent was calculated for the lower-flume watershed. However, since physical evidence of surface flow was found only in side drainages receiving runoff from culverts located along the Mt. Hopkins access road, a second calculation was made, using only the total area of contributing road surface as the watershed area. This yielded a runoff efficiency of 27.0 percent. The latter value, adjusted for infiltration on the slopes below the culverts, agrees well with measured efficiencies for compacted-earth water harvesting catchments. Based on the above, recommendations were made for developing a water supply system using the access road, modified to increase its effectiveness, as a water harvesting system and having two surface reservoirs for storage. A computer model was used to test the capability of the system to meet the projected water needs of the observatory.

Page generated in 0.1238 seconds