Spelling suggestions: "subject:"aluminoformeur"" "subject:"aluminoformeuse""
1 |
Influence de l'eau (vapeur, liquide) et du régime d'oxydation sur la dégradation de revêtements alumino-formeurs sur superalliage à base nickel / Influence of water (vapour, liquid) and of the oxidation regime on the high temperature degradation of alumina-forming coatings on Ni-based superalloysBrossard, Maxime 29 September 2014 (has links)
En service, les matériaux constituant les aubes de turbine aéronautique (superalliages à base nickel) sont soumis à des environnements agressifs susceptibles d’altérer leurs propriétés structurales. Les atmosphères oxydantes impliquées sont en général complexes (O2, H2O, CO2, SO2, NOx…), la quantité d’eau présente pouvant en particulier varier selon le régime moteur et les conditions environnantes (nuages, précipitations, humidité de l’air). Pour apporter une protection contre l’oxydation à haute température, on met en œuvre des revêtements alumino-formeurs sur lesquels une barrière thermique peut, de plus, être déposée. Le présent travail se proposait donc d’étudier l’influence de l’eau, sous forme vapeur et/ou liquide, sur le comportement de revêtements alumino-formeurs de référence, ou développés au LaSIE (barbotine d’aluminium, électrodéposition de CeO2), selon différents régimes d’oxydation (isotherme et cyclique). Afin de se rapprocher des conditions en service, une démarche scientifique originale a été proposée avec la mise en œuvre de conditions de vieillissement et post-vieillissement variées, à haute température, lors des phases de refroidissement, ou encore à température ambiante. Les expériences menées ont montré qu’une introduction de vapeur d’eau n’a que peu d’effet en régime isotherme à 1100°C, notamment lorsqu’une couche d’alumine alpha s’est développée en surface. L’ajout d’eau à froid (humidité relative,gouttes d’eau) accroît l’écaillage des couches d’oxydes, au-delà d’un temps d’oxydation critique, alors que l’apport d’eau lors de la phase de refroidissement des cycles thermiques conduit à une dégradation catastrophique des aluminures de nickel par un mécanisme combinant fatigue thermique et piqûration. / Upon service, aero-turbine blades (nickel-based superalloys) are submitted to high temperature degradation that may alter their structural properties. The oxidizing atmospheres are particularly complex (O2, H2O, CO2, SO2, NOx…) with variable water vapour contents as function of the engine regime and the atmospheric conditions (clouds, rain, relative humidity of air). These substrate materials are protected by alumina-forming coatings to improve their oxidation resistance, while additional thermal barrier coatings insulate the hottest parts. This PhD project aims at studying the effect of water (vapour, liquid) on the degradation of conventional and new coatings (Al slurry, electrodeposited CeO2) developed at the LaSIE laboratory under different oxidation regimes (isothermal and cyclic). An approximation to service conditions was proposed through an original methodology in which several oxidation and post-ageing conditions for different oxidation ranges (hot, upon cooling, at room temperature) were performed. The experiments showed little effect of water vapour mixed with air at 1100°C in isothermal conditions, in particular when the alumina scale grew over the surface. In contrast, water-containing environments at room temperature (relative humidity, water drops) increased the spallation of the oxide scales above a critical threshold time. Cyclic oxidation with water cooling provoked in turn, a catastrophic failure of the aluminide coatings by a mechanism involving thermal fatigue and pitting corrosion.
|
2 |
Développement d’assemblages brasés céramique-métal à haute tenue en température dans un environnement agressif / Development of Ceramic-to-Metal Assemblies by Brazing for High Service Temperature in a Severe EnvironmentCaboche, Juline 27 November 2017 (has links)
Le secteur aéronautique connaît un important essor depuis les années 1960, avec pour conséquence l’augmentation majeure des températures de fonctionnement des turbines. L’utilisation de capteurs, au plus proche de la chambre de combustion, est nécessaire pour maîtriser les performances des turboréacteurs. Cela justifie le besoin industriel de développer des assemblages céramique-métal résistants à un environnement sévère (>1100°C sous air, vibrations, etc.)L’alumine est sélectionnée en raison de son caractère isolant à haute température. La principale difficulté réside dans le choix du substrat métallique, qui doit être à la fois : réfractaire, résistant à l’oxydation, pour un coût abordable. Le potentiel d’un carbure ternaire (de type phase MAX) est évalué en tant que substrat métallique. La composition des brasures est ajustée pour chaque système afin de garantir : une tenue en température, une excellente ductilité et une compatibilité métallurgique vis-à-vis du substrat métallique.Des brasures ternaires Au-Pd-Pt sont formulées et élaborées. Les contours de solidus et de liquidus de ce ternaire sont déterminés expérimentalement. Les mécanismes de diffusion, de dissolution ou encore de pénétration inter-granulaire, à l’interface métal/brasure, sont décrits afin d’apporter des améliorations aux systèmes développés. Au cours du brasage, la diffusion de l’aluminium des substrats alumino-formeurs vers la brasure est prédominante, malgré la mise en place d’une barrière de diffusion. Le recours à des substrats métalliques nobles s’avère incontournable.Les paramètres géométriques et chimiques de l’assemblage sont établis pour chaque nouveau système étudié sur la base des processus physico-chimiques survenant au cours du brasage et du vieillissement sous air. Les meilleurs assemblages développés présentent une excellente herméticité après brasage. Les essais de vieillissement en cyclage thermique, dans des conditions sévères, sollicitent fortement la liaison céramique-brasure jusqu’à la rupture interfaciale. Deux voies d’améliorations sont proposées pour assurer la durabilité de la liaison céramique-brasure au cours du cyclage thermique. / Aerospace technology developments are blooming. Since the 1960’s the Turbine Entry Temperature for aero-engines gas turbines keeps rising to improve their efficiency. Sensors working close to the combustion chamber are required in order to master the turbine performances. This results in an industrial urge to develop ceramic-to-metal assemblies able to endure severe engine environment (>1100°C under air, vibrations, etc.)The choice of an alumina as the ceramic part ensures a good insulation at high temperature. The main issue remains the metallic material which must be refractory, resistant to oxidation and affordable. The application of a ternary carbide (phase MAX) is tested. The braze alloy composition is adjusted to each system so as to provide a good ductility, thermal stability and a metallurgical matching as regards dissolution and brittle compounds formation.Braze alloys based on the Au-Pd-Pt system are investigated. The aforesaid liquidus and solidus surfaces are defined from experimental measures. Diffusion, dissolution and inter-granular penetration at the metal/braze alloy interface are described to suggest improvements. Aluminum diffusion from alumina-forming materials towards the braze alloy is the dominant phenomenon during brazing, despite the use of a diffusion barrier. The use of noble materials for the metallic substrate is mandatory.Geometrical and chemical assembly parameters are defined for selected brazed system based on the physicochemical interactions occurring during brazing and aging under air. The best brazed assemblies present an excellent hermeticity after brazing. Thermal cycling aging in severe conditions is detrimental to ceramic-braze alloy bonding, leading to interfacial cracks. Two promising strategies are suggested to ensure a reliable ceramic-to-braze alloy bonding during thermal cycling.
|
Page generated in 0.0295 seconds