Spelling suggestions: "subject:"alzheimer's disease.molecular aspects"" "subject:"alzheimer's disease.regular aspects""
1 |
Plasma {221}-amyloid protein and serum {221}-amyloid autoantibody levels in patients with Alzheimer's diseaseZhou, Lin, 周琳 January 2011 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
|
2 |
Molecular mechanism of disrupted capacitative calcium entry in familial Alzheimer's diseaseTong, Chun-kit, Benjamin, 唐俊傑 January 2013 (has links)
Presenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of amyloid precursor protein to form beta amyloid (Aβ). Mutations in PS cause familial Alzheimer’s disease (FAD) by increasing the Aβ plaques formation in the brain and thereby induce neurodegeneration. Apart from this, FAD-linked PS mutations have been demonstrated to disrupt cellular calcium (Ca2+) homeostasis. Ca2+is a vital secondary messenger that involved in various neurophysiological functions, including memory, learning, and neuroplasticity and mounting evidence suggesting that Ca2+dysregulation associated with PS mutations may play a proximal role in the AD pathogenesis. Yet, the molecular mechanism for Ca2+dysregulation in AD remains debatable. It has been reported that cellular Ca2+homeostatsis can be disrupted in various ways.
On the one hand, mutant PS has been demonstrated to exaggerate Ca2+release from the endoplasmic reticulum (ER) through different pathways. On the other hand, attenuatedCa2+influx from the extracellular medium through the capacitative Ca2+entry (CCE) pathway has also been reported to bring about cellular Ca2+disruption. However, the molecular mechanism for the PS mutation-mediated CCE deficits is largely unknown. For this reason, the objective of the current study is to elucidate the underlying molecular mechanism for attenuated CCE in AD.
In this study, human neuronal cell line SH-SY5Y is employed as a cellular model to investigate the effect of wild-type or FAD-linked PS1 mutation on CCE pathway. Using single cell Ca2+imaging technique, significant CCE deficits was observed in SH-SY5Y stably expressing FAD-linked PS1mutation, PS1M146L. Interestingly, this CCE attenuation in PS1 mutant expressing cells was not mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players in the CCE pathway. Instead, co-immunoprecipitation and proximity ligation assay have suggested a physical interaction between PS1 and STIM1 proteins. Moreover, a putative gamma-secretase mediated STIM1 cleavage was discovered by western blotting. In addition, confocal imaging showed that PS1M146L significantlyreduceSTIM1 puncta formation and ER translocation followed by the activation of CCE pathway by ER Ca2+store depletion with thapsigargin. This indicated that mutant PS1 attenuates CCE by affecting STIM1 oligomerization or its recruitment with Orai1. Taken together, our results suggested the negative regulatory role of PS on CCE pathway and hypothesized the molecular mechanism of CCE where FAD-linked PS mutation is perceived as a gain-of-function mutation and enhanced the negative impact on STIM1 to inhibit Ca2+entry.This hypothetic model provides new insights into the molecular regulation for CCE pathway and the identification of the interacting domains between PS1 and STIM1 may suggest novel targets for the development of therapeutic agents that help to treat the disease. / published_or_final_version / Physiology / Master / Master of Philosophy
|
3 |
DISCOVERY OF GENES AND MOLECULAR PROCESSES THAT ARE IMPORTANT FOR THE PATHOGENESIS OF ALZHEIMER’S DISEASEUnknown Date (has links)
Alzheimer’s Disease (AD) is a complex brain disorder that affects at least one in every ten persons aged 65 and above worldwide. The pathogenesis of this disorder remains elusive. In this work, we utilized a rich set of publicly available gene expression data to elucidate the genes and molecular processes that may underlie its pathogenesis. We developed a new ranking score to prioritize molecular pathways enriched in differentially expressed genes during AD. After applying our new ranking score, GO categories such as cotranslational protein targeting to membrane, SRP-dependent cotranslational protein targeting to membrane, and spliceosomal snRNP assembly were found to be significantly associated with AD. We also confirm the protein-protein interaction between APP, NPAS4 and ARNT2 and explain that this interaction could be implicated in AD. This interaction could serve as a theoretical framework for further analyses into the role of NPAS4 and other immediate-early genes in AD pathogenesis. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
|
4 |
Apolipoprotein E and Mitochondria-associated Endoplasmic Reticulum Membrane DysfunctionTambini, Marc D. January 2015 (has links)
Despite the tremendous advances of the last century, the cause of Alzheimer disease (AD) remains unclear. Genetic analysis of families with Alzheimer disease has revealed a disease-associated variant of the APOE gene, which encodes apolipoprotein E, a transporter of lipids in the blood and central nervous system. The effect of the AD-associated isotype, termed ApoE-E4, on disease risk has been validated, though it is unclear by what mechanism apoE-E4 confers AD risk. Mitochondria have long been implicated in AD pathogenesis, as the canonical histopathological findings of amyloid plaques and tau tangles occur in the setting of mitochondrial dysfunction. The disrupted processes include calcium homeostasis, cholesterol metabolism, phospholipid synthesis, and mitochondrial dynamics, and are all regulated by a subcompartment of the ER that is in physical contact with mitochondria. This compartment, called the mitochondria-associated ER membrane, or MAM, has been found to be overactive in AD patient cell lines and cell models of AD. Given that MAM is dysfunctional in AD and that ApoE-ε4 is the most important risk factor for AD, this dissertation examines if ApoE4 contributes to the MAM dysfunction seen in AD. The MAM dysfunction seen in AD patients and in cell models of AD has been best characterized in the context of familial AD, and it is the purpose of this study to extend those findings to the more common, sporadic, form of the disease. Familial AD is the result of autosomal dominant mutations in one of three genes, amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2). APP is the protein from which amyloid-beta, the component of amyloid plaques, is cleaved. The presenilins constitute the enzymatic core of the γ-secretase complex, which cleaves amyloid-beta from a precursor APP molecule. Both PSEN1 (PS1) and PSEN2 (PS2) localize at the MAM, and their action is speculated to influence MAM activity. Fibroblasts from familial AD patients, which contained mutations in APP, PSEN1 or PSEN2, showed a marked increase in MAM activity when compared to that of age-matched controls. In mouse embryonic fibroblasts, one can recapitulate this increased MAM activity by knocking out presenilins 1 and 2. In these Psen1/2 double knockout (DKO) cells, the typical measures of MAM function, i.e. increased cholesteryl ester and phosphatidylethanolamine synthesis, calcium transport from ER to mitochondria, and co-localization of ER and mitochondria by confocal and electron microscopy, mimicked the same phenotype found in fibroblasts obtained from familial AD patients, which suggests that the presenilins are negative regulators of ER-mitochondrial apposition. The precise mechanism by which they regulate the ER-mitochondria interface, whether directly as part of a tethering complex, or indirectly though the metabolism of APP-derived substrates, is unclear. While the effect of familial AD mutations on MAM has been characterized, the mechanism of mitochondrial dysfunction seen in the more common sporadic form of the disease remains obscure. Sporadic AD patients harbor no mutations in APP, PSEN1, or PSEN2, but rather inherit mutations in other genes which do not guarantee the development of the disease, but are instead considered risk factors. The most important of these risk factors, in terms of both amount of AD risk conferred and prevalence in the population, is ApoE. Embedded in the phospholipid monolayer of lipoproteins, ApoE is involved in the transport of phospholipids, cholesterol, and cholesteryl esters in plasma and the central nervous system (CNS). In the CNS, it is the most abundant apolipoprotein, and is secreted primarily by astrocytes and taken up by neurons. Once endocytosed, ApoE can follow three different pathways: degradation by the lysosome, intracellular retention in early endosomes, or re-lipidation and re-secretion out of the cell. Our approach takes advantage of the physiological role of ApoE as part of a high densitylike lipoprotein particle (HDL). Using astrocytes from ApoE targeted gene replacement mice in which murine APOE has been replaced by either human APOE-E3 or human APOE-E4, cultured media containing ApoE3 and ApoE4-lipoproteins can be produced and applied to target cells that do not express ApoE, such as neurons or fibroblasts. These target cells can then be analyzed for MAM activity. To examine the contribution of ApoE towards MAM dysfunction, target cells, either neurons or fibroblasts, were grown in the presence of astrocyte conditioned media (ACM) from ApoE targeted gene replacement mice. Several measures of phospholipid and cholesteryl ester synthesis were performed to analyzed MAM function. To confirm that the alterations in phospholipid synthesis were the result of altered MAM activity, the same assay was performed in cells in which a protein tethers that bind mitochondria and ER were genetically ablated. Finally, to confirm that the effects seen were the result of the HDL particles and not the result of other components of the ACM, lipoproteins were extracted from ACM by density ultracentrifugation and applied to fibroblasts. In all of the assays performed, ApoE4 conditioned media or ApoE4 isolated lipoproteins were able to induce a significant increase in MAM activity, whereas ApoE4 from recombinant sources did not. These data suggest a contribution of ApoE4 towards MAM dysfunction seen in AD. The mechanism of these ApoE4 induced MAM alterations remains to be deduced. One may speculate that given the role of ApoE in cholesterol transport outside of the cell, its intracellular retention may impact the distribution of cholesterol within the cell. MAM is a cholesterol rich subdomain with lipid raft-like properties, and any change in the cholesterol content or lipid nature of this membrane may alter its activity. To test this hypothesis, MAM was biochemically extracted from ApoE3 and ApoE4 treated cells and analyzed for cholesterol and lipidomic content. The results described in this thesis demonstrate an AD-like effect in wildtype cells when treated with ApoE-E4, and that the mechanism for these alterations may be due to disturbances in cholesterol distribution in the MAM.
|
5 |
Etude pluridisciplinaire de peptides liés à la maladie d'Alzheimer: de la protéine précurseur de l'amyloïde (APP) aux oligomères de beta-amyloïde et aux inhibiteurs de gamma-sécrétase / Multidisciplinary study of Alzheimer's disease-related peptides: from amyloid precursor protein (APP) to amyloid beta-oligomers and gamma-secretase modulatorsItkin, Anna 14 May 2012 (has links)
La maladie d'Alzheimer (AD) est un désordre neurodégénératif progressif et la forme la plus commune de démence. A l’heure actuelle, il n'y a aucun remède et la maladie est toujours fatale. Une des caractéristiques histopathologiques de l'AD est la présence de dépôts protéiques, les plaques amyloïdes, dans le cerveau. Ces plaques sont formées par les peptides amyloïdes β (Aβ) de 40 et 42 résidus, qui sont les produits de clivage par des protéases de la protéine précurseur de l’amyloïde (l'APP). L'élucidation de certains des processus clés dans la cause et le développement de l'AD est une étape cruciale pour le développement de traitements nouveaux et efficaces.<p><p>Les propriétés conformationnelles du segment transmembranaire (TM) de l’APP peuvent affecter sa protéolyse par la γ-sécrétase. Ces propriétés ne sont pas encore clairement établies. Afin de comprendre le rôle des variations structurelles du TM dans le traitement de l'APP, des détails structurels des peptides APP_TM4K, chimiquement synthétisés, ont été étudiés dans la bicouche lipidique en utilisant la réflexion totale atténuée par spectroscopie infrarouge à transformée de Fourier (ATR-FTIR) et la résonance magnétique nucléaire à l’état solide (ssNMR). Tandis que la structure secondaire globale du peptide APP_TM4K est hélicoidale, une hétérogénéité conformationnelle et orientée a été observée pour le site de clivage γ et, dans une plus faible mesure, pour le site de clivage ζ. Ces variabilités conformationnelles autour des sites de clivage γ et ζ peuvent avoir des implications importantes dans le mécanisme de clivage et donc dans la production d’Aβ. Il a été aussi démontré que la dernière glycine dans le motif de dimérisation GxxxG est transmembranaire. Ceci peut impliquer que la dimérisation via ce motif pourrait servir d’ancrage et conférer une orientation transmembranaire stable au segment transmembranaire de l’APP.<p><p>Le peptide amyloïde β est directement lié à la maladie d’Alzheimer. Partant de sa forme monomérique, l’Aβ s'agrège pour produire en final des fibrilles et aussi de manière transitoire toute une gamme d'oligomères, ces derniers étant la plupart neurotoxiques. Une dérégulation de l’homéostasie du Ca2+ dans le cerveau vieillissant et dans des troubles neurodégénératifs joue un rôle crucial dans de nombreux processus et contribue au dysfonctionnement et à la mort cellulaire. Nous avons postulé que le calcium peut permettre ou accélérer l'accumulation d'Aβ. Le modèle d'accumulation d'Aβ (1-40) et celui d'Aβ (1-40) E22G, un peptide amyloïde portant la mutation arctique qui cause une apparition prématurée de la maladie, ont été comparé. Nous avons constaté qu'en présence de Ca2+, l’Aβ (1-40) forme de préférence des oligomères semblables à ceux formés par l’Aβ (1-40) E22G avec ou sans Ca2+, tandis qu'en absence de Ca2+ l'Aβ (1-40) s’agrège sous forme de fibrilles. Les ressemblances morphologiques entre oligomères ont été confirmées par microscopie de force atomique. La distribution des oligomères et des fibrilles dans des échantillons différents a été détectée par électrophorèse sur gel suivie d’une analyse par Western blot, dont les résultats ont été confirmés par des expériences de fluorescence à la thioflavine T. Dans les échantillons sans Ca2+, l’ATR-FTIR révèle la conversion des oligomères en feuillets β antiparallèles en la conformation caractéristique des fibrilles en feuillets β parallèles. En général, ces résultats nous ont ameré à conclure que les ions calcium stimulent la formation d'oligomères d'Aβ (1-40), qui sont impliqués dans la pathogénèse d'AD.<p><p>Malgré les progrès énormes obtenus dans la compréhension de la maladie (AD), il reste un défi majeur, celui du développement de médicaments nouveaux et efficaces. Afin d’obtenir des éclaircissements sur le mécanisme d'action de deux nouveaux puissants modulateurs de la γ-sécrétase - le benzyl-carprofen et le sulfonyl-carprofen dans la bicouche lipidique, la technique de RMN à l’état solide a été employée. Précédemment, les dérivés du carprofen ont été localisés dans des membranes de lipides par des expériences de diffusion (scattering) des neutrons. Les contraintes déterminées à partir des expériences de ssNMR ont permis d’affiner leurs positions et d’obtenir une orientation précise dans la double couche lipidique. Ces résultats combinés indiquent que le mécanisme probable de modulation du clivage par la γ-sécrétase est une interaction directe des carprofènes avec le domaine TM de l’APP. Une telle interaction, empêcherait à la formation de dimères d'APP, dimérisation nécessaire au clivage séquentiel par la γ-sécrétase, diminuant ou réduisant ainsi énormément la production d’Aβ, tout particulièrement d’Aβ42.<p><p>Les résultats de ce travail apporte de nouvelles informations sur les processus clés impliqués dans l'AD; Production de l'Aβ à partir de l'APP, formation des oligomères d'Aβ et mécanisme d'action potentiel de molécules thérapeutiques. Nous pensons que ces résultats pourront permettre une meilleure compréhension de la maladie et pourront aider dans la conception de nouveaux médicaments contre cette maladie.<p><p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. There is no cure and the disease is fatal. One of the characteristic histopathological markers of AD is the presence of proteinaceous deposits, amyloid plaques, in the brain. These plaques are formed by the amyloid β-peptides (Aβ) 40- and 42-residue-long, which are protease cleavage products of the amyloid precursor protein (APP). Elucidation of some of the key processes in the cause and the development of AD is crucial for the development of new and efficient treatments.<p><p>Conformational properties of the transmembrane (TM) segment of APP may affect its proteolytic processing by γ-secretase. These properties have not been definitely established. In addressing the role of structural variations of the TM sequence in APP processing, structural details of the chemically synthesized APP_TM4K peptides within the membrane bilayers were studied using Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) and solid-state nuclear magnetic resonance (ssNMR) techniques. While the overall secondary structure of the APP_TM4K peptide is an α-helix, conformational and orientational heterogeneity was observed for the γ-cleavage site and, to a smaller extent, for the ζ-cleavage site. Evidence for the conformational variability around γ- and ζ-cleavage sites may have important implications for the cleavage mechanism and hence for the Aβ production. It was also found that the last glycine within the sequence of GxxxG motifs is in the transmembrane orientation, implying that dimerization via these motifs may act as an anchor, confining the TM dimer to the stable transmembrane orientation. <p><p>Amyloid β-peptide is directly linked to AD. Starting from its monomeric form, Aβ aggregates into fibrils and / or oligomers, the latter being the most neurotoxic. Dysregulation of Ca2+ homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. The aggregation pattern of Aβ(1-40) and of Aβ(1-40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease, were compared. We found that in the presence of Ca2+, Aβ(1-40) preferentially formed oligomers similar to those formed by Aβ(1-40)E22G with or without added Ca2+, whereas in the absence of added Ca2+ the Aβ(1-40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy (AFM) imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results which were further supported by thioflavin T fluorescence experiments. In the samples without Ca2+, Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1-40), that have been implicated in the pathogenesis of AD. <p><p>Despite the tremendous progress in understanding AD, there remains the challenge of the development of new and efficient drugs. In order to shed light onto the mechanism of action of two new potent γ-secretase modulators -- benzyl-carprofen and sulfonyl-carprofen within lipid bilayers, ssNMR technique was employed. Using neutron scattering experiments it was previously found that sulfonyl-carprofen and benzyl-carprofen partition into the headgroup region of the lipid bilayer. The orientational constraints derived from the ssNMR experiments refined their position into precise orientation. Combined, these results indicate that carprofen-derivatives can directly interact with the region of APP that mediates dimerization. Such interaction, would interfere with proper APP-dimer formation, which is necessary for the sequential cleavage by γ-secretase, diminishing or greatly reducing Aβ42 production.<p><p>Results obtained during this work shed new light onto some of the key processes in AD: Aβ production from APP, formation of Aβ oligomers and insights into the mechanism of action of potential therapeutics. We believe that these results will promote a better understanding of the disease and will help in future drug design.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
6 |
Characterization of a novel Alzheimer's disease amyloid precursor protein interacting protein GULP1. / Characterization of a novel Alzheimer's disease amyloid precursor protein interacting protein engulfment adaptor protein 1January 2011 (has links)
Hao, Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 98-115). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.iii / 摘要 --- p.v / List of Abbreviations --- p.vii / List of Figures --- p.x / List of Tables --- p.xi / List of Primers --- p.xii / Publications arising from this study --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Alzheimer's disease --- p.1 / Chapter 1.2 --- APP and its functions --- p.4 / Chapter 1.2.1 --- APP processing --- p.7 / Chapter 1.3 --- APPc-interacting proteins --- p.10 / Chapter 1.3.1 --- FE65 --- p.10 / Chapter 1.3.2 --- Xllα and Xl1β --- p.12 / Chapter 1.3.3 --- JIP-1 --- p.13 / Chapter 1.3.4 --- Dabl and Dab2 --- p.15 / Chapter 1.3.5 --- SNX17 --- p.15 / Chapter 1.3.6 --- Numb --- p.15 / Chapter 1.3.7 --- AIDA-1 --- p.16 / Chapter 1.4 --- Objectives of the project --- p.18 / Chapter 1.4.1 --- Engulfment adaptor protein 1 (GULP1) --- p.19 / Chapter 1.4.2 --- Specific aims of my study --- p.20 / Chapter Chapter 2 --- General Methodology --- p.22 / Chapter 2.1 --- Bacterial culture --- p.22 / Chapter 2.2 --- Mini-preparation/Midi-preparation of plasmid DNA --- p.22 / Chapter 2.3 --- Spectrophotometric analysis of DNA --- p.22 / Chapter 2.4 --- Agarose gel electrophoresis for DNA --- p.23 / Chapter 2.5 --- Preparation of competent E. coli --- p.23 / Chapter 2.6 --- Transformation of competent E. coli --- p.24 / Chapter 2.7 --- Molecular cloning --- p.24 / Chapter 2.7.1 --- Preparation of the cloning vector and insert --- p.25 / Chapter 2.7.2 --- Isolation of DNA from agarose gel --- p.25 / Chapter 2.7.3 --- DNA ligation and transformation --- p.25 / Chapter 2.7.4 --- Rapid screening for ligated plasmid --- p.26 / Chapter 2.8 --- Site-directed mutagenesis --- p.26 / Chapter 2.9 --- Cell culture and transfection --- p.27 / Chapter 2.10 --- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) --- p.28 / Chapter 2.11 --- Western blotting --- p.29 / Chapter Chapter 3 --- Investigation of the GULP1-APP interaction and the effect of GULP1 on APP processing --- p.31 / Chapter 3.1 --- Introduction --- p.31 / Chapter 3.2 --- Materials and methods --- p.34 / Chapter 3.2.1 --- DNA constructs --- p.34 / Chapter 3.2.2 --- Antibodies --- p.34 / Chapter 3.2.3 --- GST pull-down assays --- p.35 / Chapter 3.2.4 --- Rat tissues preparation --- p.36 / Chapter 3.2.5 --- Immunostaining --- p.36 / Chapter 3.2.6 --- "siRNA knockdown of GULPl in CHO, HEK293 and SHSY5Y cells" --- p.37 / Chapter 3.2.7 --- Luciferase assays --- p.37 / Chapter 3.2.9 --- Tricine-SDS/PAGE analysis for APP CTFs --- p.38 / Chapter 3.2.9 --- Aβ enzyme-linked immunosorbent assay (ELISA) --- p.39 / Chapter 3.2.10 --- Statistical analysis --- p.40 / Chapter 3.3 --- Results --- p.40 / Chapter 3.3.1 --- GULP1 F145V mutant abandons the GULP1-APP interaction --- p.40 / Chapter 3.3.2 --- GULP1 and APP colocalize in neurons --- p.45 / Chapter 3.3.3 --- "siRNA mediated knockdown of GULPl in CHO, HEK293 and SHSY5Y cells" --- p.48 / Chapter 3.3.4 --- GULP1 enhances the cleavage of APP in APP-GAL4 cleavage system --- p.49 / Chapter 3.3.5 --- GULP1 alters APP processing by increasing the secretion of APP CTFs --- p.52 / Chapter 3.3.6 --- GULP1 stimulates Aβ secretion --- p.55 / Chapter 3.4 --- Discussion --- p.57 / Chapter Chapter 4 --- Identification and characterization of GULPl phosphorylation sites --- p.60 / Chapter 4.1 --- Introduction --- p.60 / Chapter 4.2 --- Materials and Methods --- p.60 / Chapter 4.2.1 --- DNA constructs --- p.61 / Chapter 4.2.2 --- Antibodies --- p.61 / Chapter 4.2.3 --- Expression and purification of GST fusion proteins --- p.61 / Chapter 4.2.4 --- In vitro phosphorylation of GULP1 by cdk5/p35 --- p.62 / Chapter 4.3 --- Results --- p.62 / Chapter 4.3.1 --- GULP1 Ser223 can be phosphorylated by cdk5/p35 in vivo --- p.62 / Chapter 4.3.2 --- The phosphorylation ofGULPl Thr35 completely abolished the GULP1-APP interaction --- p.67 / Chapter 4.4 --- Discussion --- p.70 / Chapter Chapter 5 --- Crystallization of the PTB domains of GULPl and GULP1t35d…… --- p.72 / Chapter 5.1 --- Introduction --- p.72 / Chapter 5.2 --- Materials and Methods --- p.72 / Chapter 5.2.1 --- DNA constructs --- p.72 / Chapter 5.2.2 --- Small-scale protein expression and purification --- p.73 / Chapter 5.2.3 --- Large-scale protein expression and purification --- p.73 / Chapter 5.2.4 --- Dynamic light scattering measurement --- p.76 / Chapter 5.2.5 --- Crystallization screening GULP1-PTB --- p.76 / Chapter 5.2.6 --- Optimization of GULP1-PTB crystals by grid screen --- p.76 / Chapter 5.2.7 --- Optimization of GULPl -PTB crystals by additive screen and detergent screen --- p.79 / Chapter 5.3 --- Results --- p.79 / Chapter 5.3.1 --- Large-scale expression and purification of GULP 1-PTB --- p.79 / Chapter 5.3.2 --- Small-scale expression and purification of GULP1T35d-PTB --- p.86 / Chapter 5.3.3 --- Crystallization screening and optimization --- p.88 / Chapter 5.4 --- Discussion --- p.91 / Chapter Chapter 6 --- Conclusion and future perspective --- p.94 / Chapter 6.1 --- Conclusion --- p.94 / Chapter 6.2 --- Future perspective --- p.95 / References --- p.98
|
7 |
Etude de la structure et de la toxicité des oligomères du peptide amyloïde-beta: implication dans la maladie d'Alzheimer / Structure and toxicity of Amyloid-beta oligomers: implications in Alzheimer's diseaseSarroukh, Rabia 26 August 2011 (has links)
La maladie d’Alzheimer est actuellement la forme de démence la plus courante. Les causes, les facteurs de risques ainsi que le(s) mécanisme(s) conduisant à l’apparition des symptômes ne sont pas encore clairement connus. Néanmoins, le rôle central du peptide amyloïde (Aβ) dans le développement de la maladie a été démontré au travers de nombreuses recherches et fait actuellement l’unanimité. L’espèce oligomérique d’Aβ est plus précisément pointée doigt comme l’espèce la plus toxique. La formation des oligomers, au cours du processus d’agrégation, conduit à une population hétérogène en termes de taille et morphologies limitant la compréhension actuelle de leur implication dans le processus pathologique ainsi que dans l’initiation de la maladie. <p>Notre étude structurale minutieuse du processus d’agrégation du peptide Aβ démontre la formation d’agrégats dont le degré d’assemblage augmente au cours du temps. Nous avons montré que les agrégats identifiés comme étant des oligomères adoptent une structure en feuillets β antiparallèles. Tandis que l’interconversion de la structure β d’antiparallèle à parallèle conduit à la formation de fibrilles. Sur base de l’interprétation des spectres infrarouges analysés par corrélation à 2 dimensions, nous suggérons que ce changement de conformation est rendu possible grâce aux modifications des liens hydrogènes. En effet, les liens hydrogènes intramoléculaires qui stabilisent la structure antiparallèle des brins β disparaissent en faveur de liens intermoléculaires conduisant à la formation de feuillets β parallèles. De plus, ce changement de conformation requière la rotation des brins β le long de leur axe respectif. <p>Notre travail a pu mettre en avant le rôle central des oligomères dans la pathologie d’une part par leur rôle d’intermédiaires transitoires nécessaires et obligatoires à la formation des fibrilles mais également par la relation étroite qui existe entre leur structure en feuillets β antiparallèles et leur toxicité cellulaire. La modulation et/ou suppression de cette conformation est requise spécifiquement pour réguler leur toxicité et empêcher le processus de mauvais reploiement du peptide conduisant au développement de la maladie. <p>Enfin, nous avons également apporté de nouvelles informations concernant l’implication des membranes biologiques dans le mécanisme de toxicité des oligomères. Nos résultats démontrent que l’interaction du peptide avec un modèle de la membrane biologique ne conduit pas à la déstabilisation de cette dernière. L’hypothèse suggérant la formation de pores et/ou de canaux ioniques comme mécanisme de cytotoxicité est de facto réfutée par notre travail. Néanmoins, nous suggérons que l’interaction du peptide avec les lipides modifie le processus d’agrégation décrit dans la première partie de notre travail. Elle accélère l’étape de nucléation permettant la formation rapide d’oligomères à la surface de la membrane et accentuant ainsi leur probabilité d’interaction avec les protéines membranaires neuronales telles que les récepteurs de neurotransmetteurs./<p>Aggregation of amyloid-β peptides (Aβ1-40 and Aβ1-42) leads to formation of heterogeneous<p>toxic species, oligomers and fibrils, implicated in Alzheimer’s disease. As oligomers were<p>identified as the most cytotoxic entities, our research did focus on their implications in<p>pathology and the Aβ aggregation process which are currently not fully understood.<p>Using ATR-FTIR spectroscopy, we demonstrated that Aβ oligomers adopt an antiparallel β-<p>sheet structure. β-sheet interconversion from antiparallel to parallel seems to be an important<p>step in the Aβ oligomers-to-fibrils transformation. Furthermore, 2-D correlation analysis of<p>infrared spectra recorded during aggregation showed that Aβ isoforms undergo different β-<p>sheet reorganizations explaining their distinct aggregation kinetics. Aβ1-40 misfolding seems<p>to be related to a greater extent of secondary structure changes (increase of β-sheet structure<p>while α-helices and random coil structures content decrease). On the contrary, the same<p>analysis for Aβ1-42 suggests that a possible β-strand ‘rotation’ triggering inter-H bonding<p>formation and stabilizing fibrils may probably explain the antiparallel to parallel β-sheet<p>conversion.<p>We also provided evidence that cytotoxicity is strongly related to the oligomeric antiparallel<p>β-sheet structure of Aβ. The concomitant absence of antiparallel β-sheet structure due to<p>incubation with whey protein-derived peptide hydrolysate strongly suggests that cytotoxicity<p>and β-sheets organization are related.<p>Formation of β-barrel spanning the lipid membrane has been proposed to explain this Aβ<p>structure-toxicity relationship. In the last part of our work, we demonstrated that the<p>interaction of Aβ1-42 with anionic lipid membranes creates and/or stabilizes specific-size<p>oligomers. These oligomers, especially the dodecamer, are known to be the most toxic.<p>Nevertheless, we could not show that these specific oligomers are implicated in membrane<p>destabilization. Further works are needed to separate and study the individual properties of<p>each oligomer. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
8 |
Novel regulation of neuronal genes implicated in Alzheimer disease by microRNALong, Justin M. 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β peptide (Aβ) as neuritic plaques in the brain. The short Aβ peptide is derived from a large transmembrane precursor protein, APP. Two different proteolytic enzymes, BACE1 and the gamma-secretase complex, are responsible for cleaving Aβ peptide from APP through an intricate processing pathway. Dysregulation of APP and BACE1 levels leading to excess Aβ deposition has been implicated in various forms of AD. Thus, a major goal in this dissertation was to discover novel regulatory pathways that control APP and BACE1 expression as a means to identify novel drug targets central to the Aβ-generating process. MicroRNAs (miRNA) are short, non-coding RNAs that act as post-transcriptional regulators of gene expression through specific interactions with target mRNAs. Global analyses predict that over sixty percent of human transcripts contain evolutionarily conserved miRNA target sites. Therefore, the specific hypothesis tested was that miRNA are relevant regulators of APP and BACE1 expression.
In this work, several specific miRNA were identified that regulate APP protein expression (miR-101, miR-153 and miR-346) or BACE1 expression (miR-339-5p). These miRNAs mediated their post-transcriptional effects via interactions with specific target sites in the APP and BACE1 transcripts. Importantly, these miRNA also altered secretion of Aβ peptides in primary human fetal brain cultures. Surprisingly, miR-346 stimulated APP expression via target sites in the APP 5’-UTR. The mechanism of this effect appears to involve other RNA-binding proteins that bind to the APP 5’-UTR.
Expression analyses demonstrated that these miRNAs are expressed to varying degrees in the human brain. Notably, miR-101, miR-153 and miR-339-5p are dysregulated in the AD brain at various stages of the disease. The work in this dissertation supports the hypothesis that miRNAs are important regulators of APP and BACE1 expression and are capable of altering Aβ homeostasis. Therefore, these miRNA may possibly serve as novel therapeutic targets for AD.
|
9 |
ROLE OF GENOMIC COPY NUMBER VARIATION IN ALZHEIMER'S DISEASE AND MILD COGNITIVE IMPAIRMENTSwaminathan, Shanker 14 February 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is the most common form of dementia defined by loss in memory and cognitive abilities severe enough to interfere significantly with daily life activities. Amnestic mild cognitive impairment (MCI) is a clinical condition in which an individual has memory deficits not normal for the individual's age, but not severe enough to interfere significantly with daily functioning. Every year, approximately 10-15% of individuals with MCI will progress to dementia. Currently, there is no treatment to slow or halt AD progression, but research studies are being conducted to identify causes that can lead to its earlier diagnosis and treatment.
Genetic variation plays a key role in the development of AD, but not all genetic factors associated with the disease have been identified. Copy number variants (CNVs), a form of genetic variation, are DNA regions that have added genetic material (duplications) or loss of genetic material (deletions). The regions may overlap one or more genes possibly affecting their function. CNVs have been shown to play a role in certain diseases.
At the start of this work, only one published study had examined CNVs in late-onset AD and none had examined MCI. In order to determine the possible involvement of CNVs in AD and MCI susceptibility, genome-wide CNV analyses were performed in participants from three cohorts: the ADNI cohort, the NIA-LOAD/NCRAD Family Study cohort, and a unique cohort of clinically characterized and neuropathologically verified individuals. Only participants with DNA samples extracted from blood/brain tissue were included in the analyses. CNV calls were generated using genome-wide array data available on these samples. After detailed quality review, case (AD and/or MCI)/control association analyses including candidate gene and genome-wide approaches were performed.
Although no excess CNV burden was observed in cases compared to controls in the three cohorts, gene-based association analyses identified a number of genes including the AD candidate genes CHRFAM7A, RELN and DOPEY2. Thus, the present work highlights the possible role of CNVs in AD and MCI susceptibility warranting further investigation. Future work will include replication of the findings in independent samples and confirmation by molecular validation experiments.
|
Page generated in 0.1093 seconds