• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Short-Time Temporal Changes of CH4 Fluxes in Different Tropical Tree Species : In-situ research regarding methane emissions from inundation-adapted Amazonian tree species in Jardim Botânico do Rio de Janeiro.

Athley, Emelie January 2023 (has links)
Methane (CH4) is guaranteed to affect climate change and is essential in rising temperatures. Scientists have known for over two decades that wetlands emit CH4 to such an extent that it affects our climate. Tropical trees that grow in wetlands tend to emit or act as a conduit of CH4, to the extent that it has a negative environmental impact. However, until this study, no one has examined whether wetland species growing in another environment have the same effects. Hence, this thesis aimed to collect data from wetland-adapted tropical trees in a non-wetland environment, namely the Botanical Garden in Rio de Janeiro. The results showed a difference in the sampling height of the stem, namely that a decrease in emission is seen with an increased height. All the species except one (Pseudobombax munguba) showed both assimilation and emission from the day-to-day measurements of CH4, which speaks for the trees acting both as a sink and a source of CH4. This suggests that the species are more robust than the environmental stressors in a non-wetland environment. Previous studies have found that increased CH4 emissions can be seen with different meteorological parameters. The results presented in this thesis show the opposite, that some species tend to emit less or assimilate more CH4 during days with increased rainfall, humidity, and temperature.

Page generated in 0.0813 seconds