• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 402
  • 402
  • 402
  • 402
  • 195
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Role of Natural Killer Cells and Interferon in Virus Infections: A Thesis

Bukowski, Jack F. 01 August 1984 (has links)
Definitive evidence that natural killer (NK) cells mediate an antiviral effect in vivo was obtained using murine cytomegalovirus (MCMV) as a model system. Adoptive transfer studies using a variety of physical and immunochemical techniques to enrich and deplete NK cell activity showed that the cell population capable of mediating resistance (as assayed by enhanced survival and reduction in spleen virus titers) had the phenotype of an NK cell: a nylon wool nonadherent, asialo GM1+, NK 1.2+, ly 5+, Thy-1-, Ia-, low-density lymphocyte. Adoptive transfer of IL-2-dependent cloned NK cells (but not T cells) also provided resistance. NK cells did not provide resistance to lymphocytic choriomeningitis virus (LCMV). Selective depletion of NK cell activity by injection of mice with antibody to anti-asialo GM1 lowered resistance to MCMV, mouse hepatitis virus, and vaccinia virus but not to LCMV. NK cell depletion resulted in up to 1000-fold increases in spleen and liver virus titers, correlating with more severe pathology in these organs. NK cells were found to have antiviral effects early (0-3 days) but not late (6-9 days) postinfection. NK cell depletion resulted in markedly increased MCMV-induced suppression of T cell function, which is probably responsible for the delayed clearance of virus seen in these mice. NK cell depletion resulted in increased virus synthesis during persistent MCMV infection, but had no effect on the course of persistent LCMV infection, despite elevated NK cell and interferon (IFN) levels found in these LCMV-infected mice. The reason why NK cells play a role against MCMV but not LCMV infection was not due to differences in NK cells induced by these 2 viruses, but more likely due to target cell susceptibility. IFN pretreatment of MCMV-infected cells failed to protect them against NK cell-mediated lysis, whereas uninfected and LCMV-infected cells were almost totally protected. These IFN-pretreated, LCMV-infected cells were not resistant to cell-mediated lysis in general, as this treatment increased their sensitivity to virus-specific T cell-mediated lysis by 2- to 3-fold. This enhanced sensitivity to lysis correlated with increased surface expression of H-2 antigens, but not viral antigens. In summary, these studies provide compelling evidence that NK cells can mediate antiviral effects in vivo, and provide some insights into their mode of action and consequences of their disfunction.
82

Mechanisms of Host-Range Function of Vaccinia Virus K1L Gene: a Dissertation

Bradley, Ritu Rakshit 13 July 2005 (has links)
The KIL gene of vaccinia virus encodes for a host range protein; in the absence of which, the virus is unable to grow in certain cell lines (RK-13 and some human cell lines). KIL function can be complemented in RK-13 cells by the cowpox host range gene product CP77 despite a lack of homology between the two proteins except for ankyrin repeats. We investigated the role of ankyrin repeats ofthe K1L gene in the host-range restriction of growth in RK-13 cells. The growth of a recombinant vaccinia virus, with the K1L gene mutated in the most conserved ankyrin repeat, was severely impaired as evidenced by lack of plaque formation and reduction in viral titers. Infection of RK-I3 cells with the mutant recombinant vaccinia virus resulted in total shutdown of both cellular and viral protein synthesis early in infection, indicating that the host restriction mediated by the ankyrin repeat is due to a translational block. A comparison of the cellular localization of the K1L wild type and mutated forms showed no difference, as both localized exclusively in the cytoplasm of RK-I3 cells. We also investigated the interaction of the vaccinia virus K1L protein with cellular proteins in RK-13 cells and co-immunoprecipitated a 90 kDa protein identified as the rabbit homologue of human ACAP2, a GTPase-activating protein with ankyrin repeats. Our result suggests the importance of ankyrin repeat for host-range function of K1L in RK-13 cells and identifies ACAP2 as a cellular protein which may be interacting with K1L.
83

<em>Chlamydomonas Reinhardtii ODA5</em> Encodes an Axonemal Protein Required for Assembly of the Outer Dynein Arm and an Associated Flagellar Adenylate Kinase: A Dissertation

Wirschell, Maureen 22 January 2004 (has links)
The first type of dynein identified, axonemel dynein (Gibbons and Rowe, 1965), slides adjacent microtubules within the axoneme, generating the force necessary for ciliary and flagellar beating. The outer dynein arm is an important component of the flagellar axoneme, providing up to 60% of the force for flagellar motility. In the absence of the outer arm, cells swim with a slow-jerky motion at about 1/3rd the speed of wild-type cells, and the flagellar beat frequency is markedly reduced. Sixteen genes (ODA1-ODA16) have been identified that are required for outer arm assembly in Chlamydomonas reinhardtii. In addition, PF13, PF22, and FLA14 are required for outer dynein arm assembly, but their phenotypes are pleiotropic, suggesting that they affect additional flagellar components. Of the uncloned genes, ODA5, ODA8, and ODA10 are of particular interest because they do not encode subunits of the outer arm or the outer dynein arm-docking complex (ODA-DC). Mutant alleles of these genes are unable to complement in temporary dikaryons, suggesting that the gene products interact with each other (Kamiya, 1988). Since the genes encoding all of the known components of the outer dynein arm and the ODA-DC have been characterized, it is of great interest to identify the gene products of these additional, uncloned ODA alleles. The first chapter provides an introduction to the Chlamydomonasflagellum, the dyneins in general, the outer dynein arm in particular, and mutations that impinge on the assembly and regulation of this important axonemal structure. The second chapter addresses the identification and isolation of genomic DNA containing the ODA5 gene. Utilizing a NIT1-tagged oda5-insertional mutant, I identified sequences flanking the site of the inserted NIT1 gene. These sequences were used to isolate wild-type genomic clones spanning the ODA5 gene. When transformed into the oda5 mutant, the wild-type clones rescued the mutant phenotype. These results demonstrated the successful isolation of the ODA5 gene. The third chapter describes the identification of the ODA5 gene and its corresponding cDNA. The rescuing genomic fragments were sequenced. Gene modeling was used to predict intron-exon splice sites. Primers to predicted exons were designed and used to obtain the ODA5 cDNA. The gene structure of Oda5 was analyzed and its predicted amino acid sequence deduced. Secondary structure predictions indicate that Oda5p is likely to contain a series of coiled-coil domains, followed by a poly-glycine sequence and a short, highly charged region. Northern analysis demonstrated that ODA5 gene expression is upregulated by deflagellation, a hallmark of many flagellar mRNAs. Data in CHAPTER IV further characterize the Oda5 protein and its association with the axoneme. Oda5p localizes to the flagellum, consistent with the enhancement in mRNA levels in response to deflagellation. Within the flagellum, Oda5p is an axonemal component that is released from the axoneme upon high salt extraction, as are the ODA-DC and the outer dynein arm. However, Oda5p does not associate with this super-complex in the high salt extract as determined by sucrose gradient sedimentation. Oda5p assembles onto the axoneme independently of the outer dynein arm and the ODA-DC,demonstrating it does not require these complexes for localization. Furthermore, Oda5p assembles onto the axoneme in the oda8, but not the oda10 mutant, demonstrating a role for the Oda10 protein in localization of Oda5p. These data provide the first biochemical evidence for an interaction between Oda5p and Oda10p. CHAPTER V reveals the discovery of a previously unrecognized phenotype exhibited in both oda5 and oda10 mutant strains: a defect in the assembly of a previously unknown flagellar adenylate kinase (AK). The protein levels of this flagellar AK are reduced in oda5 mutant axonemes, as determined by quantitative mass spectrometry. Direct enzymatic assays confirmed a reduction in AK activity in both oda5 and oda10 mutant axonemes, providing a second line of biochemical evidence supporting a complex containing Oda5p and OdalOp. The sequence of the flagellar AK gene and its cDNA were determined. CHAPTER VI details our efforts to identify the ODA10 gene. Genomic clones were isolated, which contain sequences at, or near, the ODA10 locus. Analysis of the genomic clones yielded no insights into the identity of the ODA10 gene. The inability of these clones to rescue the Oda10-motility phenotype indicates that these clones most likely do not contain an intact ODA10 gene. And lastly, CHAPTER VII discusses future experimentation that can be done based on the data provided by the current study.
84

Rb Inactivation Leads to E2F1-mediated DNA Double Strand Break Accumulation: A Dissertation

Pickering, Mary Theresa 12 April 2006 (has links)
Although it is unclear which cellular factor(s) is responsible for the genetic instability associated with initiating and sustaining cell transformation, it is known that most, if not all, cancers have mutations that inactivate the Rb-mediated growth control pathway. We show here that acute inactivation of Rb by RNA interference or expression of the E7 viral oncoprotein from human papillomavirus (HPV), and the resultant deregulation of one E2F family member, E2F1, leads to DNA double strand break (DSB) accumulation. These DSBs occur independent of apoptosis induction, and activation of ATM, NBS1, p53, or MAD2, and generation of reactive oxygen species (ROS). Although ROS accumulation is associated with DSBs generated from the mis-expression of another nuclear oncoprotein, c-MYC, we find that E2F1 does not contribute to c-MYC associated DSBs, indicating that the DSBs associated with these oncoproteins arise through distinct pathways. However, we find that small changes in E2F1 levels by inhibition of c-MYC transactivated microRNAs known to limit E2F1 protein expression, lead to DSB accumulation. These results suggest that despite the DSBs arising by different mechanisms, c-MYC assists in the regulation of E2F1-associated DSBs. We also find elevated levels of E2F1-associated DSBs in Rb mutated cancer cell lines in the absence of an exogenous DSB stimulus. These basal, E2F1-associated DSBs are substantially lower in Rb wildtype cancer cell lines that have p16ink4 inactivated or express HPV E7. However, we show that we can manipulate DSB levels in these cancer cell lines by modulating Rb and E2F1 activity and suggest that these results may be extended to breast tumor organ culture. Thus, Rb status is key to regulating both the proliferation promoting functions associated with E2F and for preventing DNA damage accumulation if E2F1 becomes deregulated. Taken together, these data suggest that loss of Rb creates strong selective pressure, via DSB accumulation, for inactivating p53 mutations and that E2F1 might contribute to the genetic instability associated with transformation and tumorigenesis.
85

Chemokine Induction by Dengue Virus Infection: Mechanisms and the Role of Viral Proteins: a Dissertation

Medin, Carey L. 26 July 2005 (has links)
The focus of this thesis is the role of dengue virus in the induction of chemokines. Dengue virus (DENV) occurs as four distinct serotypes, called DENV 1,2,3,and 4. Symptomatic DENV infection ranges from a self limited febrile illness, dengue fever (DF), to a more severe disease, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). DHF is characterized by increased capillary permeability resulting in decreased plasma volume, which may be accompanied by hemorrhagic manifestations. Many factors including T cell cross reactivity, viral burden, antibody dependent enhancement and induction of chemokines and cytokines have been reported in DHF and may play a role in the pathogenesis of DENV infection. Cytokines have been shown to modulate endothelial cell permeability [1-3]. Recent studies have shown that DENV-infected endothelial cells secrete the chemokine, interleukin (IL)-8 in vitro [4]. In addition, the permeability of an endothelial cell monolayer was found to be increased by interleukin-8 (IL-8) in vitro[5]. This thesis examines the effects of DEN2V infection on the induction of chemokines, and specifically, which DEN2V viral protein(s) are involved in the induction of IL-8. The chemokine induction profile following DEN2V infection was initially assessed in various cell lines that may represent potential targets in vivo, including monocytes, liver cells and endothelial cells. We hypothesized that distinct profiles of chemokine secretion can be induced by DEN2V infection of various cell types in vitro. We found RANTES (Regulated upon Activation, Normal T cell Expressed and Secreted) and IL-8 were induced in two of the five cell lines. DEN2V infection of primary monocyte-derived dendritic cells induced RANTES and IL-8 along with macrophage inflammatory protein-1α (MIP-1α), MIP-1β and monocyte chemoattractant protein-1 (MCP-1) but at an earlier time post infection than in the cell lines. These results showed that DEN2V infection induces distinct chemokine profiles in many cell types. In addition, monocytic-derived DCs can secrete chemokines upon infection with DEN2V. Characterization of the signaling pathways induced by DEN2V revealed that DEN2V induction of chemokines in human embryonic kidney (HEK293A) cells is mainly through the nuclear factor kappaB (NFκB) pathway, as previously reported for endothelial cells and 293T cells [4,6]. Alternatively, the liver cell line (HepG2) activated mainly activator protein (AP)-l. In addition, DENV infection can induce the activation of the interferon-stimulated response element (ISRE) driven promoter. IL-8 has been shown to have multiple effects on the immune system ranging from recruiting cells to the site of infection to countering the antiviral effects of type I interferon (IFN) [7,8]. Previous reports have shown that viral proteins can induce chemokines such as seen with IL-8 induction with the nonstructural protein 5A (NS5A) and core proteins from hepatitis C virus [9,10]. We hypothesized that protein(s) from DENV could induce chemokine production. The expression of DENV proteins was analyzed for effects on IL-8 and RANTES production in HEK293A cells. The effects of viral replication on IL-8 and RANTES induction were also analyzed using a DENV replicon that contains genes for the capsid protein and the nonstructural proteins. Transfection of plasmids expressing NS5 or the DEN2V replicon induced the expression and secretion of IL-8 but not RANTES. We attributed the lack of RANTES induction to the inability of NS5 or the DEN2V replicon to induce transcription from the ISRE driven promoter. We also found that NS5 and the DEN2V replicon induced IL-8 mainly through the CCAAT/enhancer binding protein (c/EBP) and AP-1 pathways. The profile of transcription factor activation is different from what was seen with DENV infection of HEK293A cells and suggests that the transient expression of the NS5 protein and the replication and/or translation of the DEN2V genome use different pathways than viral infection to induce IL-8. In addition, we found that the expression of prM-E, known to produce virus-like particles, could induce IL-8 secretion and activate transcription from the IL-8 promoter. As with the expression of NS5, RANTES was not induced. Analysis of the transcription factors involved in IL-8 induction using luciferase reporter constructs indicated that expression of prM-E induced transcription of IL-8 through NFκB, AP-1 and c/EBP, similar to what was seen with DEN2V infection of HEK293A cells. These results suggest that production of virions or virus-like particles induce IL-8 but that another mechanism in the viral life cycle is responsible for the induction of RANTES expression by DEN2V infection. We were also interested in the effects of drugs that have been used previously to inhibit cytokine or chemokine production on chemokine induction during DEN2V infection. We hypothesized that pharmacological inhibitors of cytokines will inhibit secretion of chemokines in DEN2V infected cells. We found that the pharmacological inhibitors SB203580 and rolipram enhanced chemokine production in a DEN2V infected liver cell line (HepG2), whereas dexamethasone had the same effect in a kidney epithelial cell line (HEK293A). We conclude that drugs that inhibit signaling pathways involved in cytokine production in other experimental systems can have variable effects on chemokine induction in different cell types during DEN2V infection. The data generated in this thesis extend our understanding of how DEN2V manipulates the host cell during viral infection to produce chemokines and perhaps enhance viral propagation and dissemination through the induction of IL-8. In addition, this study provides insight into the variable effects pharmacological drug treatment may have on disease progression during DENV infection. These results increase our understanding of DENV pathogenesis and may be helpful in finding better strategies for treatment and prevention.
86

Chromatin Structure of the Rat Osteocalcin Gene Promoter in Bone-Derived Cells

Montecino, Martin A. 15 November 1995 (has links)
Transcription of the osteocalcin gene, which encodes a bone-specific 10 kDa protein, is controlled by the coordinated utilization of modularly organized basal and hormone-responsive enhancer elements. Activation of these sequences involves the interaction of specific transcription factors to these promoter elements. It is becoming increasingly accepted that nuclear architecture provides a basis for support of tightly regulated modulation of cell growth and tissue-specific transcription which is required for the onset and progression of differentiation. Thus packaging of DNA as chromatin can facilitate the cooperative interaction between activities of independent regulatory elements that contribute to the level of transcription. Here, we show that a specific nucleosomal organization supports the constitutive expression of the osteocalcin gene in ROS 17/2.8 rat osteosarcoma cells and that chromatin remodeling directly correlates with the developmentally regulated transcriptional activation of this gene in normal diploid osteoblasts. By combining DNase I, micrococcal nuclease, and specific restriction endonuclease digestion analysis, we observed that the presence of DNase I hypersensitive sites (proximal: -170 to -70, and distal: -600 to -400) and a selective nucleosome positioning over the osteocalcin gene promoter are directly associated with developmentally stage-specific transcriptional activation in bone-derived cells. In addition, we found that chromatin hyperacetylation prevents a key transition in the chromatin structure which is required for the formation of the distal DNase I hypersensitive site. This transition involves the interaction of specific nuclear factors and is necessary for the subsequent ligand-dependent binding of the vitamin D receptor complex. Finally, we have established a requirement for sequences residing in the proximal region of the osteocalcin gene promoter for both formation of the proximal hypersensitive site and basal transcriptional activity. Our approach was to assay nuclease accessibility in ROS 17/2.8 cell lines stably transfected with promoter deletion constructs driving expression of a CAT reporter gene.
87

Checkpoint Regulation of S-Phase Transcription: A Dissertation

Dutta, Chaitali 05 September 2008 (has links)
The DNA replication checkpoint transcriptionally up-regulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF (aka DSC1), the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitrophosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Substitution of two potential phosphorylation sites with phospho-mimetic amino acids suffice to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggest that checkpoint regulation of the MBF transcription factor may be a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. Our result shows that both the replication checkpoint and the S-phase DNA damage checkpoint are involved in activating MBF regulated S-phase gene transcription and that this coordinated transcriptional response is beneficial for survival during replication stress. I demonstrate that the beneficial role of the transcriptional response during checkpoint activation is mediated by three major MBF transcripts: cdc22, mrc1 and mik1. Mrc1 dependent stabilization of stalled fork is important during S phase arrest. However, cells ability to prevent mitosis (Mik1 dependent) along with stable fork (Mrc1 dependent) both are crucial for survival. Our data also suggest that the level of Cdc22 is a determining factor for replication checkpoint activation and when over-expressed can alleviate the effects not only in HU but also in MMS.
88

Functional Interaction of BPV-1 E2 with the Papillomavirus Genome: A Dissertation

Melanson, Suzanne Marie 24 February 2009 (has links)
The bovine papillomavirus type 1 E2 protein is a multifunctional early viral protein with roles in all phases of the cell cycle. E2 is required during G1 as a transcription factor, in S phase to initiate viral replication and during mitosis to tether the viral genome to dividing DNA. The viral genome contains 17 E2 binding sites, the majority of which are concentrated in the long control region (LCR), a regulatory region that is upstream of the viral coding sequence. The role of these binding sites has been explored in vitro using small plasmids and E1 and E2 proteins expressed in bacteria and insect cells. In this study we attempt to examine the placement of E2 on its binding sites during all phases of the cell cycle and in the context of a stably replicating viral system. As part of the examination of the role of E2 during mitosis, we have also examined the role of the cohesin protein Scc1 in viral tethering. Two groups have published disparate reports identifying the cellular protein that binds to the transactivation domain of E2 to stably maintain viral genomes during cell division. Our group has published that it is the DNA helicase ChlR1 that is required for viral tethering, while it has been reported that it is the bromodomain protein Brd4 that is responsible. In this study we contribute to a report that shows that the cellular protein Scc1 binds to the viral genome through a ChlR1 independent mechanism. The cohesin protein binds to BPV-1 E2 at intermittent stages of the cell cycle and may be a factor in viral genome tethering. This interaction may also be important for regulating viral transcription.
89

Elucidation of the Multi-Faceted Roles of the SIN (Septation Initiation Network); Understanding How the SIN Promotes Cytokinesis and Inhibits Interphase Growth in the Fission Yeast Schizosaccharomyces pombe: A Dissertation

Ray, Samriddha 17 August 2010 (has links)
Cytokinesis is the cytoplasmic division of one cell into two independent daughter cells. Precise regulation of cytokinesis during cell cycle is essential for healthy and rapid multiplication of any organism. Schizosaccharomyces pombe has emerged as an excellent model system to study eukaryotic cell division regulation. This rod shaped organism grows by bipolar elongation in interphase when its actin cytoskeleton is concentrated at the cell ends (poles). However, growth stops in mitosis and the actin cytoskeleton is rearranged to facilitate assembly of the contractile actomyosin ring at the cell middle. Although several studies have focused on the separate processes of growth and division, it was unclear how cells regulate the cytoskeletal remodeling during the transition between the different stages of the cell cycle. The Septation Initiation Network (SIN) is a signaling cascade essential for fission yeast cytokinesis (Balasubramanian et al., 1998; Mishra et al., 2004) and the MOR (morphogenesis) signaling pathway is essential for interphase bipolar growth (Kanai et al, 2005). Interestingly, inactivation of the SIN not only failed to maintain the cytokinetic apparatus at the cell middle but also caused the redistribution of the cytoskeletal elements like actin to the cell ends that led to bipolar cell elongation similar to cells in interphase (Mishra et al., 2004). These results suggested that SIN signaling inhibits interphase bipolar growth, but it was not clear if the SIN had a direct role in inhibition of interphase growth during mitosis and this question was the major focus of this thesis. The results presented in Chapter II show a novel cross-pathway interaction between the SIN and the MOR in the fission yeast. Our results in Chapter III suggest that some of the MOR pathway components might be important for coordination between nuclear and cytoplasmic divisions in mitosis, revealing novel roles of the pathway. In a separate study (Chapter IV) we sought to identify additional regulators of the SIN and cytokinesis through a suppressor screen and found that the nucleolar rDNA transcription machinery inhibits cytokinesis in fission yeast.
90

Cloning, Expression and Regulation of CYP3A10, a Hamster Liver Cytochrome P450 Involved in Lithocholic Acid and Steroid 6β-Hydroxylation: a Dissertation

Teixeira, Jose Manuel 01 January 1994 (has links)
Bile acid metabolism is integrally involved in cholesterol homeostasis in mammals because it is the major means by which cholesterol is eliminated from the body. We have undertaken an effort to study the molecular mechanisms underlying the regulation of bile acid metabolism by isolating and characterizing the cDNA and gene for an enzyme that hydroxylates lithocholic acid (LCA) at position 6β, lithocholic acid 6β-hydroxylase; the first bile acid-induced gene reported. LCA is a very hydrophobic, toxic bile acid formed from chenodeoxycholic acid in the gut lumen upon reduction of the 7α-hydroxy group by microbial enzymes. The proper elimination of LCA is essential for maintenance of the bile acid pool and for prevention of cholestasis which results from LCA precipitating in the cannaculi of the liver when its concentration is high. The LCA 6β-hydroxylase cDNA was isolated by differential hybridization of hamster liver libraries prepared from animals fed either a cholic acid enriched diet or a cholestipol-rich chow and was named CYP3A10 based on its homology with other cytochrome P450s (P450) in family 3A. We found that CYP3A10 was essentially expressed only in males. A statistical analysis of RNA from young males fed with cholic acid and normal chow showed that the cholic acid induction was about 50% at the RNA level. We determined the biological nature of the protein encoded by CYP3A10 by expression of the cDNA in COS cells. Microsomes prepared from transfected cells were assayed with LCA as a substrate and found to hydroxylate LCA predominantly at position 6β. We examined whether CYP3A10 could hydroxylate other steroid compounds by assays with testosterone, progesterone and androstenedione and found that, although 6β-hydroxylase (as well as others) activity was observed with all three, LCA was the preferred substrate based on kinetic analysis. A developmental time course of CYP3A10 expression in males showed little expression before puberty, a striking induction of expression at puberty and a fourfold induction thereafter through adulthood. We then examined the male-specific expression of CYP3A10 in hamster liver. We disrupted the pattern of GH secretion in male hamsters by hypophysectomy, neonatal glutamate treatment and by continuous infusion of GH via osmotic minipumps (to mimic the female pattern of GH secretion) and found no significant effect on CYP3A10 expression. Conversely, in females, hypophysectomy and neonatal glutamate treatment significantly induced CYP3A10 expression 5- to 10-fold. Additionally, when females treated neonatally with glutamate were injected twice daily with GH as adults (to mimic the male pattern of GH secretion), the levels of CYP3A10 expression were not significantly different from those of normal males. These results led us to conclude that the pattern of GH secretion in males does not control the male-specific expression of CYP3A10 but that in females expression can be induced by altering the tonic secretion of GH. No significant effect on CYP3A10 expression was observed by castration of adult males, indicating that circulating androgens were not required for expression. We found that gonadal hormones (e.g. estrogen and progesterone) do not have a suppressive effect on CYP3A10 expression in females since ovariectomy did not induce expression. Many genes are "imprinted" neonatally by exposure to a given effector for developmental-, tissue- or sexually regulated expression. We investigated whether neonatal androgen exposure was required for male-specific expression of CYP3A10 by castrating hamsters neonatally and determining the level of CYP3A10 expression in adulthood. Our results indicate that androgens are required neonatally for CYP3A10 expression since no expression was observed in neonatally castrated hamsters. We were unable to induce expression in neonatally castrated hamsters by either GH or testosterone injections. These results suggest several notable points 1) that CYP3A10 expression is programmed neonatally by androgen exposure; 2) that androgens exert their effect directly on the liver and not via the hypothalamus; 3) that neither testosterone nor GH can restore CYP3A10 expression when males have not been exposed to androgens neonatally; and 4) that in experimental conditions, females can be induced to express CYP3A10, which indicates that there are two modes for regulating expression: by "imprinting" in males and by GH and testosterone in females. We are now studying the molecular mechanisms involved in the bile acid-mediated induction and the male-specific expression of CYP3A10. We have cloned approximately 8 kb of 5' flanking DNA from a hamster genomic library and sequenced about 1 kb of proximal DNA. Primer extension and S1 digestion analyses indicate that the mRNA for CYP3A10 has multiple transcription initiation sites clustered about 90 bp from the initiator methionine codon. We have also prepared CYP3A10 promoter/lacZ chimeric constructs to begin delineating the cis-acting elements controlling CYP3A10 expression and regulation. We used H2.35 cells as recipients because they are a mouse hepatocyte cell line that has been transformed with a temperature sensitive SV40. These cells can be grown at the permissive temperature and can be induced to behave like liver cells, the differentiated condition, by switching to a nonpermissive temperature. We have found that the construct with 1 kb of proximal CYP3A10 5' flanking DNA was able to express the reporter gene at higher levels under differentiated conditions, which were consistent with higher expression of an albumin promoter/lacZconstruct, upon switching the cells to the more liver phenotype. The system characterized and described here is ideally suited for dissecting the molecular details governing bile acid-mediated regulation and sexually dimorphic expression of liver genes. Very little is known about both these very important biological phenomena. Much could be learned about transcriptional regulation of liver genes by investigating the cis-elements and trans-acting factors mediating regulation of CYP3A10 expression.

Page generated in 0.0871 seconds