• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 401
  • 401
  • 401
  • 401
  • 195
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Mitotic Response to DNA Damage in Early Drosophila Embroyos: a Dissertation

Kwak, Seongae 30 April 2008 (has links)
DNA damage induces mitotic exit delays through a process that requires the spindle assembly checkpoint (SAC), which blocks the metaphase to anaphase transition in the presence of unaligned chromosomes. Using time-lapse confocal microscopy in syncytial Drosophila embryos, we show that DNA damage leads to arrest during prometaphase and anaphase. In addition, functional GFP fusions to the SAC components MAD2 and Mps1, and the SAC target Cdc20 relocalize to kinetochore through anaphase arrest, and a null mad2mutation blocks damage induced prometaphase and anaphase arrest. We also show that the DNA damage signaling kinase Chk2 is required for damage induced metaphase and anaphase arrest, and that a functional GFP-Chk2 fusion localizes to kinetochores and centrosomes through mitosis. In addition, in the absence of Chk2, we find that DNA damage sufficient to fragment centromere DNA does not delay mitotic exit. We conclude that DNA damage signaling through Chk2 triggers Mad2-dependent delays in mitotic progression, both before or after the metaphase-anaphase transition.
262

Role of Disulfide Bond Rearrangement in Newcastle Disease Virus Entry: A Dissertation

Jain, Surbhi 26 June 2008 (has links)
Newcastle disease virus (NDV), an avian paramyxovirus, enters the host cell by fusion of viral and host cell membranes. The fusion of two membranes is mediated by the viral fusion (F) protein. The F protein, like other class I fusion proteins, is thought to undergo major conformational changes during the fusion process. The exact mechanism that leads to major refolding of F protein is not clear. Recently, it has been proposed that disulfide bond reduction in the fusion protein of some viruses may be involved in the conformational changes in fusion proteins. In some viruses, the reduction of disulfide bonds in the fusion protein is mediated by host cell disulfide isomerases belonging to the protein disulfide isomerase (PDI) family. In this study, the role of disulfide bond isomerization in the entry of NDV was analyzed. Using inhibitors of thiol-disulfide isomerases, we found that blocking the reduction of disulfide bonds in the fusion protein inhibited cell-cell fusion as well as virus entry into the host cell. Also, over-expression of isomerases belonging to the PDI family significantly enhanced cell-cell fusion. Taken together, these results suggest that free thiols play an important role in fusion mediated by NDV glycoproteins. Using a thiol specific, membrane impermeable biotin, MPB, we found that free thiols are produced in cell surface-expressed NDV F protein. The production of free thiols was inhibited by inhibitors of thiol-disulfide isomerases. Over-expression of isomerases belonging to the PDI family enhanced detection of free thiols in F protein. In F protein, present in virions or in virus-like particles, free thiols were detected only after the particles were attached to target cells. Taken together, these results suggest that free thiols are produced in F protein and the production of free thiols is mediated by host cell thiol-disulfide isomerases. Using conformation sensitive antibodies, we also studied the conformation of cell surface-expressed F protein in the presence ofthiol-disulfide isomerase inhibitors or in cells over-expressing thiol-disulfide isomerases. In the presence of thiol-disulfide isomerase inhibitors, the cell surface-expressed F protein was in a prefusion conformation while in cells over-expressing thiol-disulfide isomerases the F protein was in a post-fusion conformation. We also correlated the production of free thiols to the conformational changes in F protein. Using temperature-arrested intermediates or F protein with mutations in heptad repeat domains, which are defective in attaining intermediate conformations, we found that free thiols are produced before any of the proposed conformational changes in F protein. Also, the production of free thiols in F protein was found to be independent of its activation by hemagglutinin-neuraminidase (HN) protein. These results suggest that free thiols are probably required for the activation of F protein during membrane fusion.
263

Identification of the Function of the Vpx Protein of Primate Lentiviruses: A Dissertation

Zhu, Xiaonan 14 December 2009 (has links)
Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/ Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. The functions of Vpx/ Vpr are not well understood. This study presents evidence that the Vpx proteins of HIV-2/ SIVSMpromote HIV-1 infection by antagonizing an antiviral restriction in myeloid cells. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in transovercame the restriction to HIV-1 and SIV infection. Similarly, the cellular restriction is the obstacle to transduction of macrophages by MLV. Neutralization of the restriction by Vpx rendered macrophages permissive to MLV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. This study further demonstrates that this restriction prevents transduction of quiescent monocytes by HIV-1. Although terminally differentiated macrophages are partially permissive to HIV-1, quiescent monocytes, which are macrophage precursors, are highly refractory to lentiviral infection. Monocyte-HeLa heterokaryons were resistant to HIV-1 infection, while heterokaryons formed between monocytes and HeLa cells expressing Vpx were permissive to HIV-1 infection, suggesting the resistance of quiescent monocytes to HIV-1 transduction is governed by a restriction factor. Encapsidation of Vpx within HIV-1 virions conferred the ability to infect quiescent monocytes. Introduction of Vpx into monocytes by pre-infection also rendered quiescent monocytes permissive to HIV-1 infection. Infection of monocytes by HIV-1 either with or without Vpx did not have an effect on temporal expression of CD71. In addition, Vpx increased permissivity of CD71– and CD71+cells to HIV-1 infection with no apparent bias. These results confirm that Vpx directly renders undifferentiated monocytes permissive to HIV-1 transduction without inducing their differentiation. The introduction of Vpx did not significantly alter APOBEC3G complex distribution, suggesting a restriction other than APOBEC3G was responsible for the resistance of monocytes to HIV-1. Collectively our results indicate that macrophages and monocytes harbor a potent antiviral restriction that is counteracted by the Vpx protein. The relative ability of primate lentiviruses and gammaretroviruses to transduce non-dividing myeloid-cells is dependent upon their ability to neutralize this restriction.
264

Post-Transcriptional Control of Human Cellular Senescence: A Dissertation

Burns, David M. 15 July 2010 (has links)
The central dogma of biology asserts that DNA is transcribed into RNA and RNA is translated into protein. However, this overtly simplistic assertion fails to portray the highly orchestrated and regulated mechanisms of transcription and translation. During the process of transcription, RNA provides the template for translation and protein synthesis as well as the structural and sequence specificity of many RNA and protein-based machines. While only 1-5% of the genome will escape the nucleus to be translated as mRNAs, complex, parallel, highly-conserved mechanisms have evolved to regulate specific mRNAs. Trans-acting factors bind cis-elements in both the 5" and 3" untranslated regions of mRNA to regulate their stability, localization, and translation. While a few salient examples have been elucidated over the last few decades, mRNA translation can be reversibly regulated by the shortening and lengthening of the 3" polyadenylate tail of mRNA. CPEB, an important factor that nucleates a complex of proteins to regulate the polyadenylate tail of mRNA, exemplifies a major paradigm of translational control during oocyte maturation and early development. CPEB function is also conserved in neurons and somatic foreskin fibroblasts where it plays an important role in protein synthesis dependent synaptic plasticity and senescence respectively. Focusing on the function of CPEB and its role in mRNA polyadenylation during human cellular senescence, the following dissertation documents the important finding that CPEB is required for the normal polyadenylation of p53 mRNA necessary for its normal translation and onset of senescence. Cells that lack CPEB have abnormal levels of mitochondria and ROS production, which are demonstrated to arise from the direct result of hypomorphic p53 levels. Finally, in an attempt to recapitulate the model of CPEB complex polyadenylation in human somatic cells, I unexpectedly find that Gld-2, a poly(A) polymerase required for CPEB-mediated polyadenylation in Xenopus laevis oocytes, is not required for p53 polyadenylation, but instead regulates the stability of a microRNA that in turn regulates CPEB mRNA translation. Furthermore, I demonstrate that CPEB requires Gld-4 for the normal polyadenylation and translation of p53 mRNA.
265

Regulation of Cellular and HIV-1 Gene Expression by Positive Transcription Elongation Factor B: A Dissertation

O'Brien, Siobhan 26 October 2010 (has links)
RNA polymerase II-mediated transcription of HIV-1 genes depends on positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We show that P-TEFb interacts with H1 and that H1 phosphorylation in cell culture correlates with P-TEFb activity. Importantly, P-TEFb also directs H1 phosphorylation during Tat transactivation and wild type HIV-1 infection. Our results also show that P-TEFb phosphorylates histone H1.1 at a specific C-terminal site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb disrupts Tat transactivation as well as transcription of the c-fos and hsp70 genes in HeLa cells. P-TEFb phosphorylation of H1 also plays a role in the expression of muscle differentiation marker genes in the skeletal myoblast cell line C2C12. Additionally, ChIP experiments demonstrate that H1 dissociates from the HIV-1 LTR in MAGI cells, stress-activated genes in HeLa cells, and muscle differentiation marker genes in C2C12 cells under active P-TEFb conditions. Our results overall suggest a new role for P-TEFb in both cellular and HIV-1 transcription through chromatin.
266

Digital and Analog STAT5 Signaling in Erythropoiesis: A Dissertation

Porpiglia, Ermelinda 16 August 2011 (has links)
Erythropoietin (Epo) modulates red blood cell production (erythropoiesis) by binding to its receptor and activating STAT5, a Signal Transducer and Activator of Transcription (STAT) protein implicated in both basal and stress erythropoiesis. Epo concentration in serum changes over three orders of magnitude, as it regulates basal erythropoiesis and its acceleration during hypoxic stress. However, it is not known how STAT5 translates the changes in Epo concentration into the required erythropoietic rates. We addressed this question by studying STAT5 phosphorylation, at the single cell level, in developing erythroblasts. We divided erythroid progenitors in tissue into several flow-cytometric subsets and found that each of them exhibited distinct modes of Stat5 activation, based on their developmental stage. STAT5 activation is bistable in mature erythroblasts, resulting in a binary (or digital), low-intensity STAT5 phosphorylation signal (p-Stat5). In early erythroblasts, and in response to stress levels of Epo, the low intensity bistable p-Stat5 signal is superseded by a high-intensity graded, or analog, signal. The gradual shift from high-intensity graded signaling in early erythroblasts to low intensity binary signaling in mature erythroblasts is due to a decline in STAT5 expression with maturation. We were able to convert mature, digital transducing erythroblasts into analog transducers simply by expressing high levels of exogenous STAT5. We found that EpoR-HM mice, expressing a mutant EpoR that lacks STAT5 docking sites, generate the binary, but not the analog, STAT5 signal. Unlike Stat5-null mice, which die perinatally, the EpoR-HM mice are viable but deficient in their response to stress, demonstrating that while binary STAT5 signaling is sufficient to support basal erythropoiesis, analog signaling is required for the stress response. Bistable systems contain a positive loop, which is important for flipping the switch between the two stable ‘on’ or ‘off’ states. We show that bistable activation is the result of an autocatalytic loop in which active STAT5 promotes further STAT5 activation. The isolated STAT5 N-terminal domain, which is not required for STAT5 phosphorylation, enhanced autocatalysis, converting a high intensity graded signal into a high intensity binary response. The N-terminal domain is known to participate in a radical conformational reorientation of STAT5 dimers inherent in STAT5 activation. We propose that the N-terminal domains of active STAT5 dimers facilitate the conformational reorientation of inactive dimers, in a prion-like autocatalytic interaction that underlies bistability and binary signaling. Together, bistable STAT5 activation, combined with a graded response allow erythropoietic rate to faithfully reflect a wide Epo concentration range, while preventing aberrant signaling.
267

Tyraminergic G Protein-Coupled Receptors Modulate Locomotion and Navigational Behavior In C. Elegans: A Dissertation

Donnelly, Jamie L. 04 August 2011 (has links)
An animal’s ability to navigate through its natural environment is critical to its survival. Navigation can be slow and methodical such as an annual migration, or purely reactive such as an escape response. How sensory input is translated into a fast behavioral output to execute goal oriented locomotion remains elusive. In this dissertation, I aimed to investigate escape response behavior in the nematode C. elegans. It has been shown that the biogenic amine tyramine is essential for the escape response. A tyramine-gated chloride channel, LGC-55, has been revealed to modulate suppression of head oscillations and reversal behavior in response to touch. Here, I discovered key modulators of the tyraminergic signaling pathway through forward and reverse genetic screens using exogenous tyramine drug plates. ser-2, a tyramine activated G protein-coupled receptor mutant, was partially resistant to the paralytic effects of exogenous tyramine on body movements, indicating a role in locomotion behavior. Further analysis revealed that ser-2 is asymmetrically expressed in the VD GABAergic motor neurons, and that SER-2 inhibits neurotransmitter release along the ventral nerve cord. Although overall locomotion was normal in ser-2 mutants, they failed to execute omega turns by fully contracting the ventral musculature. Omega turns allow the animal to reverse and completely change directions away from a predator during the escape response. Furthermore, my studies developed an assay to investigate instantaneous velocity changes during the escape response using machine based vision. We sought to determine how an animal accelerates in response to a mechanical stimulus, and subsequently decelerates to a basal locomotion rate. Mutant analysis using this assay revealed roles for both dopamine and tyramine signaling. During my doctoral work, I have further established the importance for tyramine in the nematode, as I have demonstrated two additional roles for tyramine in modulating escape response behavior in C. elegans.
268

Analysis of Integrin α6β4 Function in Breast Carcinoma: A Dissertation

Gerson, Kristin D. 06 April 2012 (has links)
The development and survival of multicellular organisms depends upon the ability of cells to move. Embryogenesis, immune surveillance, wound healing, and metastatic disease are all processes that necessitate effective cellular locomotion. Central to the process of cell motility is the family of integrins, transmembrane cell surface receptors that mediate stable adhesions between cells and their extracellular environment. Many human diseases are associated with aberrant integrin function. Carcinoma cells in particular can hijack integrins, harnessing their mechanical and signaling potential to propagate cell invasion and metastatic disease, one example being integrin α6β4. This integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin family of extracellular matrix proteins. The role of integrin β4 in potentiating carcinoma invasion is well established, during which it serves both a mechanical and signaling function. miRNAs are short non-coding RNAs that regulate gene expression posttranscriptionally, and data describing the role of extracellular stimuli in governing their expression patterns are sparse. This observation coupled to the increasingly significant role of miRNAs in tumorigenesis prompted us to examine their function as downstream effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma. The work presented in this dissertation documents the first example that integrin expression correlates with specific miRNA patterns. Moreover, integrin β4 status in vitro and in vivo is associated with decreased expression of distinct miRNA families in breast cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell motility. Another miRNA, miR-29a, is significantly downregulated in response to de novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the miRNA is required for invasion. Another major conclusion of this study is that β4 integrin expression and ligation can regulate the expression of SPARC in breast carcinoma cells. These data reveal distinct mechanisms by which β4 promotes SPARC expression, involving both a miR-29a-mediated process and a TOR-dependent translational mechanism. Our observations establish a link between miRNA expression patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a novel effector of β4-mediated invasion.
269

A Role for c-Jun Kinase (JNK) Signaling in Glial Engulfment of Degenerating Axons: A Dissertation

MacDonald, Jennifer M. 07 June 2012 (has links)
The central nervous system (CNS) is composed of two types of cells: neurons that send electrical signals to transmit information throughout the animal and glial cells. Glial cells were long thought to be merely support cells for the neurons; however, recent work has identified many critical roles for these cells during development and in the mature animal. In the CNS, glial cells act as the resident immune cell and they are responsible for the clearance of dead or dying material. After neuronal injury or death, glial cells become reactive, exhibiting dramatic changes in morphology and patterns of gene expression and ultimately engulfing neuronal debris. This rapid clearance of degenerating neuronal material is thought to be crucial for suppression of inflammation and promotion of functional recovery, but molecular pathways mediating these engulfment events remain poorly defined. Drosophila melanogaster is a genetically tractable model system in which to study glial biology. It has been shown that Drosophila glia rapidly respond to axonal injury both morphologically and molecularly and that they ultimately phagocytose the degenerating axonal debris. This glial response to axonal debris requires the engulfment receptor Draper and downstream signaling molecules dCed-6, Shark, and Rac1. However, much remains unknown about the molecular details of this response. In this thesis I show that Drosophila c-Jun kinase (dJNK) signaling is a critical in vivo mediator of glial engulfment activity. In response to axotomy, glial dJNK signals through a cascade involving the upstream MAPKKKs Slipper and TAK1, the MAPKK MKK4, and ultimately the Drosophila AP-1 transcriptional complex composed of JRA and Kayak to initiate glial phagocytosis of degenerating axons. Interestingly, loss of dJNK also blocked injury-induced up-regulation of Draper levels in glia and glial-specific over-expression of Draper was sufficient to rescue phenotypes associated with loss of dJNK signaling. I have identified the dJNK pathway as a novel mediator of glial engulfment activity and show that a primary role for the glial Slipper/Tak1→MKK4→dJNK→dAP-1 signaling cascade is activation of draper expression after axon injury.
270

Characterization of New Factors in the 18S Nonfunctional Ribosomal RNA Decay Pathway in S. cerevisiae: A Dissertation

Merrikh, Christopher N. 05 March 2012 (has links)
The molecular biology revolution of the 1960s has given rise to an enormous body of literature describing, in great detail, the inner workings of the cell. Over the course of the past 50 years, and countless hours at the bench, biologists have used the implications of basic research to produce vaccines, antibiotics, and other therapies that have improved both the quality and duration of our lives. Despite these incredible advances, basic questions remain unanswered. In even the simplest model organism, hundreds of essential genes have never been studied. Moreover, the central dogma of molecular biology—DNA to RNA to Protein—is understood largely in terms of how the cell functions under ideal conditions. What happens when things go wrong? This study seeks to characterize one of the cell’s contingency plans—a quality control measure for the eukaryotic ribosome. Today, despite the abundance of ribosomes in all cells, we are only beginning to understand the details of how they function, and the mechanisms that monitor their behavior. Recently, inactivated ribosomes were shown to be destroyed by the cell's own quality control measures, potentially preventing them from harming the cell. This system, dubbed 18S Nonfunctional rRNA Decay, is known to utilize a pair of ribosome-binding proteins to carry out its function. Yet the pathway still functions, albeit more slowly, in the absence of these two proteins, suggesting that other components must exist. The work discussed here is largely concerned with identifying these other factors, characterizing their activities, and determining how the 18S Nonfunctional rRNA Decay pathway impacts the health of the cell.

Page generated in 0.0792 seconds