• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 401
  • 401
  • 401
  • 401
  • 195
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Functional Analysis of Ing1 and Ing4 in Cell Growth and Tumorigenesis: a Dissertation

Coles, Andrew H. 02 May 2008 (has links)
The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play well-established roles in numerous biological processes, several models have been proposed in the literature that ING proteins act as key regulators of cell growth and tumor suppression not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-кB activity. However, these models have yet to be substantiated by in vivo experimentation. Research described in this dissertation utilizes a genetic approach to analyze the functional role of two ING proteins, Ing1b and Ing4, in regulating cell growth, inflammation, and tumorigenesis. Loss of p37Ing1b increased proliferation and DNA damage-induced apoptosis irrespective of p53 status in primary cells and mice. However, all other p53 responses were unperturbed. Additionally, p37Ing1b suppressed the formation of spontaneous follicular B-cell lymphomas in mice. Analysis of B-cells from these mice indicates that p37Ing1b inhibits the proliferation of B cells regardless of p53 status, and loss of p53 greatly accelerates the rate of B-cell lymphomagenesis in p37Ing1b-null mice, with double null mice presenting with aggressive diffuse large B-cell lymphomas (DLBL). Marker gene analysis in p37Ing1b/p53 null tumors indicates that these mice develop both non-germinal center and germinal center B cell-like DLBL, and also documents upregulation of NF-кB activity in both B-cells and tumors. Similarly, Ing4 -/- mice did not have altered p53 growth arrest or apoptosis, and did not develop spontaneous tumors. However, Ing4 -/- cells displayed reduced proliferation, and Ing4 -/- mice and macrophages were hypersensitive to treatment with LPS and exhibited decreased IкB gene expression and increased NF-кB activity. These studies demonstrate that Ing proteins can function to suppress spontaneous tumorigenesis and/or inflammatory responses without altering p53 activity, and identifies NF-кB as a biologically-relevant in vivo target of Ing1 and Ing4 signaling.
292

Analysis of Polarity Signaling in Both Early Embryogenesis and Germline Development in C. Elegans: A Dissertation

Bei, Yanxia 18 January 2005 (has links)
In a 4-cell C. elegans embryo the ventral blastomere EMS requires polarity signaling from its posterior sister cell, P2. This signaling event enables EMS to orient its division spindle along the anterior-posterior (A/P) axis and to specify the endoderm fate of its posterior daughter cell, E. Wnt pathway components have been implicated in mediating P2/EMS signaling. However, no single mutants or various mutant combinations of the Wnt pathway components disrupt EMS polarity completely. Here we describe the identification of a pathway that is defined by two tyrosine kinase related proteins, SRC-1 and MES-1, which function in parallel with Wnt signaling to specify endoderm and to orient the division axis of EMS. We show that SRC-1, a C. elegans homolog of c-Src, functions downstream of MES-1 to specifically enhance phosphotyrosine accumulation at the P2/EMS junction in order to control cell fate and mitotic spindle orientation in both the P2 and EMS cells. In the canonical Wnt pathway, GSK-3 is conserved across species and acts as a negative regulator. However, in C. elegans we find that GSK-3 functions in a positive manner and in parallel with other components in the Wnt pathway to specify endoderm during embryogenesis. In addition, we also show that GSK-3 regulates C. elegans germline development, a function of GSK-3 that is not associated with Wnt signaling. It is required for the differentiation of somatic gonadal cells as well as the regulation of meiotic cell cycle in germ cells. Our results indicate that GSK-3 modulates multiple signaling pathways to regulate both embryogenesis and germline development in C. elegans.
293

Gene Expression and Profiling of Human Islet Cell Subtypes: A Master’s Thesis

Blodgett, David M. 25 July 2012 (has links)
Background: The endocrine pancreas contains multiple cell types co-localized into clusters called the Islets of Langerhans. The predominant cell types include alpha and beta cells, which produce glucagon and insulin, respectively. The regulated release of these hormones maintains whole body glucose homeostasis, essential for normal metabolism and to prevent diabetes and complications from the disease. Given the heterogeneous nature of islet composition and absence of unique surface markers, many previous studies have focused on the whole islet. Sorting islet cells by intracellular hormone expression overcomes this limitation and provides pure populations of individual islet cell subsets, specifically alpha and beta cells. This technique provides the framework for characterizing human islet composition and will work towards identifying the genetic changes alpha and beta cells undergo during development, growth, and proliferation. Methods: Human islets obtained from cadaveric donors are dissociated into a single cell suspension, fixed, permeabilized, and labeled with antibodies specific to glucagon, insulin, and somatostatin. Individual alpha, beta, and delta cell populations are simultaneously isolated using fluorescence activated cell sorting. Candidate gene expression and microRNA profiles have been obtained for alpha and beta cell populations using a quantitative nuclease protection assay. Thus far, RNA has been extracted from whole islets and beta cells and subjected to next generation sequencing analysis. Results: The ratio of beta to alpha cells significantly increases with donor age and trends higher in female donors; BMI does not appear to significantly alter the ratio. Further, we have begun to investigate the unique gene expression profiles of alpha and beta cells versus whole islets, and have characterized the microRNA profiles of the two cell subsets. Conclusions: By establishing methods to profile multiple characteristics of alpha and beta cells, we hope to determine how gene, miRNA, and protein expression patterns change under environmental conditions that lead to beta cell failure or promote beta cell development, growth, and proliferation.
294

Regulation and Function of Stress-Activated Protein Kinase Signal Transduction Pathways: A Dissertation

Brancho, Deborah Marie 14 January 2005 (has links)
The c-Jun NH2-terminal kinase (JNK) group and the p38 group of mitogen-activated protein kinases (MAPK) are stress-activated protein kinases that regulate cell proliferation, differentiation, development, and apoptosis. These protein kinases are involved in a signal transduction cascade that includes a MAP kinase (MAPK), a MAP kinase kinase (MAP2K), and a MAP kinase kinase kinase (MAP3K). MAPK are phosphorylated and activated by the MAP2K, which are phosphorylated and activated by various MAP3K. The work presented in this dissertation focuses on understanding the regulation and function of the JNK and p38 MAPK pathways. Two different strategies were utilized. First, I used molecular and biochemical techniques to examine how MAP2K and MAP3K mediate signaling specificity and to define their role in the MAPK pathway. Second, I used gene targeted disruption studies to determine the in vivo role ofMAP2K and MAP3K in MAPK activation. I specifically used these approaches to examine: (1) docking interactions between p38 MAPK and MAP2K [MKK3 and MKK6 (Chapter II)]; (2) the differential activation of p38 MAPK by MAP2K [MKK3, MKK4, and MKK6 (Chapter III)]; and (3) the selective involvement of the mixed lineage kinase (MLK) group of MAP3K in JNK and p38 MAPK activation (Chapter IV and Appendix). In addition, I analyzed the role of the MKK3 and MKK6 MAP2K in cell proliferation and the role of the MLK MAP3K in adipocyte differentiation (Chapter III and Chapter IV). Together, these data provide insight into the regulation and function of the stress-activated MAPK signal transduction pathways.
295

Mechanisms of TAL1 Induced Leukemia in Mice: A Dissertation

O'Neil, Jennifer Elinor 22 January 2004 (has links)
Activation of the basic helix-loop-helix (bHLH) gene TAL1 is the most common genetic event seen in both childhood and adult T cell acute lymphoblastic leukemia (T-ALL). Despite recent success in treating T-ALL patients, TAL1 patients do not respond well to current therapies. In hopes of leading the way to better therapies for these patients, we have sought to determine the mechanism(s) of Tal1 induced leukemia in mice. By generating a DNA-binding mutant Tal1 transgenic mouse we have determined that the DNA binding activity of Tal1 is not required to induce leukemia. We have also shown that Tal1 expression in the thymus affects thymocyte development and survival. We demonstrate that Tal1 heterodimerizes with the class I bHLH proteins E47 and HEB in our mouse models of TAL1 induced leukemia. Severe thymocyte differentiation arrest and disease acceleration in Tal1/E2A+/- and Tal1/HEB+/- mice provides genetic evidence that Tal1 causes leukemia by inhibiting the function of the transcriptional activators E47 and HEB which have been previously shown to be important in T cell development. In pre-leukemic Tal1 thymocytes, we find the co-repressor mSin3A/HDAC1 bound to the CD4 enhancer, whereas an E47/HEB/p300 complex is detected in wild type thymocytes. Furthermore, mouse Tal1 tumors are sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data demonstrate that Tal1 induces T cell leukemia by repressing the transcriptional activity of E47/HEB and suggests that HDAC inhibitors may prove efficacious in T-ALL patients that express TAL1.
296

The Role of Endoplasmic Reticulum Stress Signaling in Pancreatic Beta Cells: a Dissertation

Lipson, Kathryn L. 07 May 2008 (has links)
Protein folding in the endoplasmic reticulum (ER) is essential for proper cellular function. However, the sensitive environment in the ER can be perturbed by both pathological processes as well as by physiological processes such as a large biosynthetic load placed on the ER. ER stress is a specific type of intracellular stress caused by the accumulation of immature or abnormal misfolded or unfolded proteins in the ER. Simply defined, ER stress is a disequilibrium between ER load and folding capacity. Cells have an adaptive response that counteracts ER stress called the "Unfolded Protein Response” (UPR). The ability to adapt to physiological levels of ER stress is especially important for maintaining ER homeostasis in secretory cells. This also holds true for pancreatic β-cells, which must fold and process large amounts of the hormone insulin. Pancreatic β-cells minimize abnormal levels of glycemia through adaptive changes in the production and regulated secretion of insulin. This process is highly sensitive, so that small degrees of hypo- or hyperglycemia result in altered insulin release. The frequent fluctuation of blood glucose levels in humans requires that β-cells control proinsulin folding in the ER with exquisite sensitivity. Any imbalance between the load of insulin translation into the ER and the actual capacity of the ER to properly fold and process the insulin negatively affects the homeostasis of β-cells and causes ER stress. In this dissertation, we show that Inositol Requiring 1 (IRE1), an ER-resident kinase/endoribonuclease and a central regulator of ER stress signaling, is essential for maintaining ER homeostasis in pancreatic β-cells. Importantly, IRE1 has a crucial function in the body’s normal production of insulin in response to high glucose. Phosphorylation and subsequent activation of IRE1 by transient exposure to high glucose is coupled to insulin biosynthesis, while inactivation of IRE1 by siRNA or inhibition of IRE1 phosphorylation abolishes insulin biosynthesis. IRE1 signaling under these physiological ER stress conditions utilizes a unique subset of downstream components of IRE1 and has a beneficial effect on pancreatic β-cell homeostasis. In contrast, we show that chronic exposure of β-cells to high glucose causes pathological levels of ER stress and hyperactivation of IRE1, leading to the degradation of insulin mRNA. The term “glucose toxicity” refers to impaired insulin secretion by β-cells in response to chronic stimulation by glucose and is characterized by a sharp decline in insulin gene expression. However, the molecular mechanisms of glucose toxicity are not well understood. We show that hyperactivation of IRE1 caused by chronic high glucose treatment or IRE1 overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1 signaling using a dominant negative form of the protein prevents insulin mRNA degradation in β-cells. Additionally, islets from mice heterozygous for IRE1 retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates. This work suggests that the rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism may represent an essential element in the adaptation of β-cells to chronic hyperglycemia. This adaptation is crucial for the maintenance of β-cell homeostasis and may explain in part why the β-cells of diabetic patients with chronic hyperglycemia stop producing insulin without simply undergoing apoptosis. This work implies that prolonged activation of IRE1 signaling is involved in the molecular mechanisms underlying glucose toxicity. This work therefore reveals two distinct activities elicited by IRE1 in pancreatic β-cells. IRE1 signaling activated by transient exposure to high glucose enhances proinsulin biosynthesis, while chronic exposure of β-cells to high glucose causes hyperactivation of IRE1, leading to the degradation of insulin mRNA. Physiological IRE1 activation by transient high glucose levels in pancreatic β cells has a beneficial effect on insulin biosynthesis. However, pathological IRE1 activation by chronic high glucose or experimental drugs negatively affects insulin gene expression. In the future, a system to induce a physiological level of IRE1 activation, and/or reduce the pathological level of IRE1 activation could be used to enhance insulin biosynthesis and secretion in people with diabetes, and may lead to the development of new and more effective clinical approaches to the treatment of this disorder.
297

The Roles of DNA Mismatch Repair and Recombination in Drug Resistance: A Dissertation

Calmann, Melissa A. 01 December 2004 (has links)
Cells have evolved different pathways in order to tolerate damage produced by different cytotoxic agents. Each agent reacts differently with DNA causing formation of different types of adducts, each eliciting the SOS stress response to induce different cellular repair pathways. One such type of substrate generated by cytotoxic agents is the DNA double strand break (DSB). The main pathway to repair such damage in the cell is through a process of recombination. In this thesis, I specifically examined the anti-cancer therapeutic agent cisplatin, which forms single- and double-strand breaks in DNA, and methylating agents, which are proposed to also be capable of forming such breaks. Neither type of agent can directly form these breaks; however, they leave a signature type of damage lesion which is recognized by different repair processes. The mismatch repair (MMR) status of a mammalian cell or an Escherichia coli dam mutant relates directly to the sensitivity of the cells to the agents mentioned above. As the dam gene product plays an important role in this pathway and in other processes in the cell, when mutated, dam cells are more sensitive to methylating agents and cisplatin than wildtype. A combination of dam and either mutS or mutL restores resistance to the same agents to wild type levels. Therefore, mismatch repair sensitizes dam bacteria to these agents. The rationale for this comes from examining the viability of dam mutants, as dammutants are only viable because they are highly recombinogenic. The presence of MMR-induced nicks or gaps results in the formation of DSBs that require recombination to restore genomic integrity. Mismatch repair proteins inhibit recombination between homeologous DNA. Homeologous recombination (recombination between non-identical, but similar, DNA sequences) is only possible when the MMR proteins, MutS and MutL, are absent. It is postulated that this is because MutS recognizes the homeologous DNA and subsequently slows down or aborts recombination completely. The double mutant, dam mutS/L shows wild type levels of sensitivity to cisplatin because mismatch repair is no longer recognizing the adducts and recombinational repair is allowed to continue. Human cells behave in an analogous fashion to the bacterial dam mutant, showing sensitivity to cisplatin and methylating agents. When an additional mutation in a mismatch repair gene is present, the cells become as resistant as wild type. Therefore, the E. coli dammutant is a useful model system to study this mechanism of drug resistance. DNA containing cisplatin adducts or lesions resulting from methylation are substrates for other types of repair processes such as nucleotide excision repair and base excision repair; however they have also been implicated as substrates for MMR and recombinational repair. The goal of the work in this thesis was two-fold. The first was to identify the gene products and mechanism necessary for repair of cisplatin damage by recombination. The second was to examine the mechanism of cisplatin toxicity, and specifically how MMR proficiency aids in the cytotoxicity of this drug by preventing recombination. Using the duplicated inactive lac operon recombination assay, we were able to determine the requirements for spontaneous and cisplatin-induced recombination, the RecBCD and RecFOR pathways. We were also able to further postulate that the cisplatin- induced signature damage recognized by recombination was the double strand break, likely formed from fork stalling and regression or a subsequent collapse during DNA synthesis, thus requiring these pathways for repair. This observation led to the experiments involving examination of the mechanism of cisplatin toxicity and where MMR could inhibit specific steps of recombination with DNA containing cisplatin lesions. Low levels of cisplatin lesions slowed the rate of RecA-mediated strand transfer in vitro, likely due to its ability to form a large bend in the DNA. MutS bound to cisplatin lesions in the DNA during heteroduplex formation in the RecA strand exchange step of recombination, inhibiting branch migration, and aborting the reaction. In order for MutS to inhibit recombination with cisplatin lesions, the results in the work in Chapter IV, show that binding to the lesion requires the C-terminus of MutS to be present, possibly due to a requirement for tetramerization of the protein, a domain contained in the C-terminus of MutS. This antirecombination function is different than the mutation avoidance function of MutS, as binding of mismatches requires only dimers. This differential sensitivity for cisplatin versus a mismatch was further exemplified in Chapter V, the experiments with dna mutants, where the greatest difference in sensitivity was observed for a dnaE mutant (catalytic subunit of polIII), which was as sensitive to cisplatin as a dam mutant, but fairly resistant to treatment with MNNG. This is indicative of the potency of a cisplatin adduct to block polymerase progression, versus a mismatch which poses little problem to synthesis. Recombination is invoked to repair DSBs caused by the cisplatin lesions through the RecBCD and FOR pathways after fork regression or collapse. A main conclusion from these studies is that a cisplatin lesion is processed differently than a mismatch. The mechanism of how a cisplatin lesion is processed, forming the DSB which invokes recombinational repair is still unclear and continues to be investigated.
298

Peptidyltransfer Reaction Catalyzed by the Ribosome and the Ribozyme: a Dissertation

Sun, Lele 08 May 2003 (has links)
The "RNA world" hypothesis makes two predictions that RNA should have been able both to catalyze RNA replication and to direct protein synthesis. The evolution of RNA-catalyzed protein synthesis should be critical in the transition from the RNA world to the modem biological systems. Peptide bond formation is a fundamental step in modem protein biosynthesis. Although many evidence suggests that the ribosome is a ribozyme, peptide bond formation has not been achieved with ribosomal RNAs only. The goal of this thesis is to investigate whether RNA could catalyze peptide bond formation and how RNA catalyzes peptide bond formation. Two systems have been employed to approach these questions, the ribozyme system and the ribosome system. Ribozymes have been isolated by in vitro selection that can catalyze peptide bond formation using the aminoacyl-adenylate as the substrate. The isolation of such peptide-synthesizing ribozymes suggests that RNA of antiquity might have directed protein synthesis and bolsters the "RNA world" hypothesis. In the other approach, a novel assay has been established to probe the ribosomal peptidyltransferase reaction in the presence of intact ribosome, ribosomal subunit, or ribosomal RNA alone. Several aspects of the peptidyltransfer reaction have been examined in both systems including metal ion requirement, pH dependence and substrate specificity. The coherence between the two systems is discussed and their potential applications are explored. Although the ribozyme system might not be a reminiscence of the ribosome catalysis, it is still unique in other studies. The newly established assay for ribosomal peptidyltransferase reaction provides a good system to investigate the mechanism of ribosomal reaction and may have potential application in drug screening to search for the specific peptidyltransferase inhibitors.
299

Analysis of Toll-Like Receptor 4 Signal Transduction and IRF3 Activation in the Innate Immune Response: A Dissertation

Rowe, Daniel C. 21 June 2006 (has links)
Over the last decade, the innate immune system has been the subject of extensive research. Often overlooked by the robustness and specificity of the adaptive immune system, the innate immune system is proving to be just as complex. The identification of several families of pattern recognition receptors (PRRs) has revealed an ancient yet multifaceted system of proteins that are responsible for initiating host defense. A wide array of pathogens, from virus to bacteria, is detected using this assortment of receptors. One such family, the Toll-like receptors (TLRs), has been at the forefront of this research. To date, 10 TLRs have been described in the human genome. Activation of TLRs leads to the induction of immune-related genes that ultimately control the response of the host. However, the signaling pathways emanating from activated TLRs and other PRRs are not fully understood. In particular, the pathway leading to the activation of interferon regulatory factor 3 (IRF3), a transcription factor crucial for the induction of type I interferon, remains undefined. IRF3 activation occurs as the consequence of viral infection and through the activation of TLRs 3 and 4 by dsRNA and lipopolysaccharide (LPS), respectively. The focus of this research is to describe components of the IRF3 activation pathway, partly through the analysis of TLR signal transduction. IRF3 normally resides in the cytoplasm of cells. Upon infection with certain viruses and bacteria, IRF3 is activated though phosphorylation at its C-terminus. Phosphorylated IRF3 homodimerizes and associates with co-activators CBP-p300. After translocating to the nucleus, the activate IRF3 complex induces the activation of type 1 interferon and interferon related genes. Little is known about the pathways that lead to the activation of IRF3, especially the kinases involved. In this study we report that the non-canonical IкB kinase homologues, IкB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-кB activation, are also essential components of the IRF3 signaling pathway. In particular, mouse embryonic fibroblasts from TBK1 deficient mice fail to activate IRF3 in response to both viral infection and stimulation with LPS or poly (IC), a dsRNA analog. Thus, both IKKε and TBK1 play a critical role in innate immunity and host defense. In addition to viral infection, IRF3 activation also occurs via the activation of TLR3 and 4. TLRs signal through a subfamily of Toll-IL-1-Resistance (TIR) domain containing adapter molecules. One such adapter, MyD88, is crucial for all TLRs, with the exception of TLR3. MyD88 participates in a signal transduction pathway culminating in the activation of the transcription factor NF-кB. Studies from MyD88-deficient mice reveal that both TLR3 and 4 still are capable of activating NF-кB, although with slightly delayed kinetics. Another aspect of the MyD88-independent signal transduction pathway is the activation of IRF3. A second TIR domain containing adapter molecule called Mal/Tirap was discovered and originally thought to mediate the MyD88-independent pathway. However, Mal-deficient mice were found to be defective in both TLR2 and 4 mediated NF-кB activation. We hypothesized that other TIR domain containing adapters could mediate this MyD88-independent pathway of TLR3 and 4 leading to the activation of IRF3. Two additional TIR adapters were discovered, TRIF and TRAM. TRIF was shown to mediate TLR3 signal transduction. In this study, we report that both TRIF and TRAM mediate the activation of the MyD88-independent pathway in response to LPS/TLR4 activation. Unlike any of the other known TIR domain containing adapters, TRAM appears to be restricted to the LPS/TLR4 activation pathway while TRIF plays a role in both TLR3 and TLR4 pathways leading to IRF3 target gene expression. Our studies revealed that TRAM could be acting upstream of TRIF in the LPS/TLR4 pathway. To this end, we sought to determine the localization of TRAM within the cell. We found that TRAM localizes to the plasma membrane. TRAM localization is the result of myristoylation since mutation of the predicted myristoylation site (G2A) resulted in the re-distribution of TRAM from the membrane into the cytoplasm. Reconstitution of TRAM-deficient macrophages with TRAM G2A is unable to rescue LPS/TLR4 signal transduction. Thus, myristoylation and membrane association of TRAM are critical for LPS/TLR4 signal transduction. The data generated in this dissertation extends our understanding of the signaling pathways of the innate immune system. Indeed, the molecules and pathways described herein could prove to be beneficial targets for ameliorating symptoms of disease, both autoimmune and pathogen-associated. Finally, the research described here will spur further insight into the complex signaling pathways of a once ignored arm of the immune system.
300

Attrition of CD8 T Cells during the Early Stages of Viral Infections: a Dissertation

Bahl, Kapil 09 January 2008 (has links)
Profound lymphopenia has been observed during many acute viral infections, and our laboratory has previously documented a type 1 IFN-dependent loss of most memory (CD44hi) and some naïve (CD44lo) CD8 T cells immediately preceding the development of the antiviral T cell response at days 2-4 following lymphocytic choriomeningitis virus (LCMV) infection. In this thesis, I will examine additional mechanisms involved in the early attrition of CD8 T cells and evaluate whether antigen-specific and non-specific CD8 T cells are equally susceptible. Lastly, I will examine whether the early attrition of CD8 T cells contributes to the generation of an effective immune response. Poly(I:C), a potent inducer of type 1 IFN, was previously shown to cause the attrition and apoptosis of CD8α+CD44hi cells in normal mice, but not in type 1 IFN receptor–deficient mice (IFN1-R KO). I questioned whether additional molecule(s) might contribute to the type 1 IFN-induced apoptosis of CD8α+CD44hi cells. I used a PCR array to determine the expression of 84 apoptosis-related genes at 6 hours post-poly(I:C) treatment, relative to an untreated control. There was an 11-fold increase in CD40 RNA expression in CD8α+CD44hi cells isolated from poly(I:C)-treated mice. CD40 protein expression was also increased on CD8α+CD44hi cells, peaking between 9 and 12 hours following poly(I:C) treatment, before declining thereafter. This increase in CD40 protein expression directly correlated with an increase in Annexin V reactivity, an indicator of early apoptosis. Nevertheless, CD40 was not required for the loss of CD8α+CD44hi cells, as both wildtype and CD40-deficient mice were equally susceptible to the poly(I:C)-induced attrition. Upon further characterization, I found this population of CD40+CD8α+CD44hi cells to be CD11c+B220-Thy1.2- MHCIIhi, which is consistent with a “lymphoid” CD8α+ DC phenotype. Kinetic analysis revealed a type 1 IFN-dependent increase in this CD8α+ DC population at 12 hours post-poly(I:C) treatment. This increase was only observed in the spleen, as no increase in percentage was observed in the peritoneal cavity (PEC), lungs, inguinal lymph nodes (iLN), or peripheral blood. Collectively, these results suggest that the type 1 IFN-dependent increase in splenic CD8α+DCs accounts for the observed increase in Annexin V reactive cells following poly(I:C) treatment. These findings required a re-evaluation of the type 1 IFN-induced attrition of CD8+CD44hi T cells with an anti-CD8β antibody, which is a more exclusive marker for T cells than the anti-CD8α antibody. Kinetic analysis revealed a significant decrease in splenic CD8β+CD44hi T cells at 12 hours post-poly(I:C) treatment. This reduction in splenic CD8β+CD44hi T cells was not due to trafficking to other organs, as the PECs, lungs, iLN, lungs, and peripheral blood all exhibited significant, although varying, decreases in the percentage of CD8β+CD44hi T cells at 12 hour following poly(I:C) treatment. These data support the notion that the type 1 IFN-induced attrition of CD8β+CD44hiT cells was a “global” phenomenon and could not be completely due to migration out of the spleen. The attrition of CD8β+CD44hi T cells was also dependent upon type 1 IFN at 3 days post-LCMV infection, as there was no significant reduction of this population in IFN1-R KO mice. The loss of wildtype CD8β+CD44hi T cells correlated with an increased activation of caspases 3 and 8, which are enzymes that play essential roles in apoptosis and inflammation. A significant loss of CD4+CD44hi T cells, which also correlated with an increased activation of caspases 3 and 8, was observed at 3 days post-LCMV infection. Collectively, these results suggest that attrition of both CD4+CD44hi and CD8β+CD44hiT cell populations is type 1 IFN-dependent and associated with the activation of caspases following LCMV infection. At 3 days post-LCMV infection, both wildtype CD8β+CD44hi and CD4+CD44hi T cell populations had a higher frequency of cells with fragmented DNA, a hallmark characteristic of the late stages of apoptosis, as revealed by terminal transferase dUTP nick end labeling (TUNEL), relative to uninfected controls. This suggests that the loss of both populations was due to apoptosis. Therefore, I questioned whether the LCMV-induced apoptosis of both CD4+CD44hi and CD8β+CD44hi T cell populations occurred through a mitochondrial-induced pathway involving the pro-apoptotic molecule Bim. The attrition of both CD4+CD44hi and CD8β+CD44hi T cells was significantly higher in wildtype mice compared to Bim KO mice at 3 days post-LCMV infection. Moreover, both wildtype CD8β+CD44hi and CD4+CD44hi T cell populations had higher frequency of TUNEL+ cells, relative to Bim KO populations. These results suggest that the apoptosis of CD8β+CD44hi and CD4+CD44hiT cells, following LCMV infection, might occur through a mitochondrial-induced pathway involving Bim. Studies have shown “lymphoid” CD8α+ DCs to be involved in the phagocytosis of apoptotic lymphocytes. Therefore, I evaluated whether host CD8α+ DCs are capable of phagocytosing apoptotic lymphocytes by adoptively transferring CFSE-labeled wildtype donor splenocytes (Ly5.1) into congenic wildtype hosts (Ly5.2), followed by inoculation with poly(I:C). There was an increased frequency of donor cells (Ly5.1, CFSE+) within the host CD8α+CD11c+ gate at 9 and 12 hours post-poly(I:C) treatment. The results suggest that type 1 IFN-activated CD8α+DCs might aid in the rapid clearance of apoptotic cells during the type 1 IFN-induced attrition associated with viral infections. I next questioned whether TCR engagement by antigen would render CD8 T cells resistant to attrition. I tested whether a high concentration of antigen (GP33 peptide) would protect LCMV-specific naïve TCR transgenic P14 cells specific for the GP33 epitope of LCMV and GP33-specific LCMV-immune cells from depletion. Both naïve P14 and memory GP33-specific donor CD8 T cells decreased substantially 16 hours after inoculation poly(I:C), regardless of whether a high concentration of GP33 peptide was administered to host mice beforehand. The increased activation status of naïve antigen-specific cells via peptide inoculation did not confer resistance to type 1 IFN-induced depletion. Donor naïve P14 and LCMV-specific memory cells were also depleted from day 2 LCMV-infected (Clone 13) hosts by 16 hours post-transfer. These results indicate that antigen engagement does not protect CD8 T cells from the type 1 IFN-induced attrition associated with viral infections. Computer models indicated that early depletion of memory T cells may allow for the generation for a more diverse T cell response to infection by reducing the immunodomination caused by cross-reactive T cells. To test this in a biological system, I questioned whether the reduced apoptosis of the crossreactive memory CD8 population (NP205), in aged LCMV-immune mice (18-22 months), following heterologous virus challenge (PV), would allow it to dominate the immune response. At day 8 post-PV infection, the cross-reactive memory CD8 T cell response (NP205) was more immunodominating in aged LCMV-immune mice relative to younger LCMV-immune mice. This was indicated by the increased ratio of the cross-reactive NP205 response to the newly arising noncross-reactive, PV-specific NP38 response in older LCMV-mice relative to younger LCMV immune-mice, at day 8 post-PV infection. These data suggest that the early attrition of T cells allows for the generation of a more diverse T cell response to infection by reducing the immunodomination caused by crossreactive T cells. Collectively, these findings offer further insight into the early attrition of T cells associated with viral infections.

Page generated in 0.2447 seconds