• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 401
  • 401
  • 401
  • 401
  • 195
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Intestine Homeostasis and the Role of Tumor Suppressor Gene 101 in Drosophila Melanogaster: A Dissertation

Chatterjee, Madhurima 21 December 2011 (has links)
Tissue homeostasis in the adult Drosophila melanogaster intestine is maintained by controlling the proper balance of stem cell self-renewal and differentiation. In the adult fly midgut, intestinal stem cells (ISCs) are the only dividing cells and their identity maintenance is crucial to the proper functioning of the fly gut. Various pathways such as Notch, JAK-STAT and Wingless are known to regulate ISC division and differentiation. Here I used a pathogen feeding model to study conditions that accelerate ISC division and guide intestinal cell differentiation favoring enterocyte development. I also examined the role of Tumor Suppressor Gene 101 (TSG101) in ISC maintenance and function. TSG101, a part of the ESCRT1 complex. It is known to stimulate the Notch pathway and to play a role in endocytic trafficking. TSG101 loss-of-function mutants show developmental defects in various fly and mammalian tissues. The protein also plays a role in virus abscission from host cells. In my experiments I have observed that TSG101 is required for ISC maintenance. TSG101 knockdown and loss of function mutant clones have defects in ISC proliferation that hinder the normal intestinal responses to oral pathogen ingestion. Based on these results I conclude that TSG101 is needed in the adult fly intestine for proper ISC maintenance and function, thereby being an important player in intestinal homeostasis.
322

TXNIP is a Mediator of ER Stress-Induced β-Cell Inflammation and Apoptosis: A Dissertation

Oslowski, Christine M. 11 May 2012 (has links)
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia. The pathogenesis of these diseases involves β-cell dysfunction and death. The primary function of β-cells is to tightly regulate the secretion, production, and storage of insulin in response to blood glucose levels. In order to manage insulin biosynthesis, β-cells have an elaborate endoplasmic reticulum (ER). The ER is an essential organelle for the proper processing and folding of proteins such as proinsulin. Proteins fold properly when the ER protein load balances with the ER folding capacity that handles this load. Disruption of this ER homeostasis by genetic and environmental stimuli leads to an accumulation of misfolded and unfolded proteins, a condition known as ER stress. Upon ER stress, the unfolded protein response (UPR) is activated. The UPR is a signaling network that aims to alleviate ER stress and restore ER homeostasis promoting cell survival. Hence, the UPR allows β-cells to handle the physiological fluctuations of insulin demand. However upon severe unresolvable ER stress conditions such as during diabetes progression, the UPR switches to pathological outputs leading to β-cell dysfunction and apoptosis. Severe ER stress may also trigger inflammation and accumulating evidence suggests that inflammation also contributes to β-cell failure, but the mechanisms remain elusive. In this dissertation, we demonstrate that thioredoxin interacting protein (TXNIP) mediates ER stress induced β-cell inflammation and apoptosis. During a DNA microarray analysis to identify novel survival and death components of the UPR, we identified TXNIP as an interesting proapoptotic candidate as it has been linked to glucotoxicity in β-cells. During our detailed investigation, we discovered that TXNIP is selectively expressed in β-cells of the pancreas and is strongly induced by ER stress through the IRE1α and PERK-eIF2α arms of the UPR and specifically its transcription is regulated by activating transcription factor 5 (ATF5) and carbohydrate response element binding protein (ChREBP) transcription factors. As TXNIP has been shown to activate the Nod-like receptor protein 3 (NLRP3) inflammasome leading to the production of the inflammatory cytokine interleukin-1β (IL- 1β), we hypothesized that perhaps TXNIP has a role in IL-1β production under ER stress. We show that ER stress can induce IL-1β production and that IL-1β is capable of binding to IL-1 type 1 receptor (IL-1R1) on the surface of β-cells stimulating its own expression. More importantly, we demonstrate that TXNIP does indeed play a role in ER stress mediated IL-1β production through the NLRP3 inflammasome. Furthermore, we also confirmed that TXNIP is a mediator of β-cell apoptosis under ER stress partially through IL-1β signaling. Collectively, we provide significant novel findings that TXNIP is a component of the UPR, mediates IL-1β production and autostimulation, and induces cell death under ER stress in β-cells. It is becoming clear that TXNIP has a role in the pathogenesis of diabetes and is a link between ER stress, oxidative stress and inflammation. Understanding the molecular mechanisms involved in TXNIP expression, activity, and function as we do here will shed light on potential therapeutic strategies to tackle diabetes.
323

Understanding Small RNA Formation in Drosophila Melanogaster: A Dissertation

Cenik, Elif Sarinay 09 July 2012 (has links)
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from premicroRNA. My thesis focuses on the functional characteristics of two Drosophila Dicers that makes them specific for their biological substrates. We found that RNA binding protein partners of Dicers and two small molecules, ATP and phosphate are key in regulating Drosophila Dicers’ specificity. Without any additional factor, recombinant Dicer-2 cleaves pre-miRNA, but its product is shorter than the authentic miRNA. However, the protein R2D2 and inorganic phosphate block pre-miRNA processing by Dicer-2. In contrast, Dicer-1 is inherently capable of processing the substrates of Dicer, long dsRNAs. Yet, partner protein of Dicer-1, Loqs-PB and ATP increase the efficiency of miRNA production from pre-miRNAs by Dicer-1, therefore enhance substrate specificity of Dicer-1. Our data highlight the role of ATP and regulatory dsRNA-binding partner proteins to achieve substrate specificity in Drosophila RNA silencing. Our study also sheds light onto the function of the helicase domain in Drosophila Dicers. Although Dicer-1 doesn’t hydrolyze ATP, ATP enhances miRNA production by increasing Dicer-1’s substrate specificity through lowering its KM. On the other hand, Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP, and ATP hydrolysis is required for Dicer-2 to process long dsRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, is processive; generating siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate. Piwi-dependent small RNAs, namely piRNAs, are a third class of small RNAs that are distinct from miRNAs and siRNAs. Their primary function is to repress transposons in the animal germline. piRNAs are Dicer-independent, and require Piwi family proteins for their biogenesis and function. Recently in addition to their presence in animal germlines, the presence and function of piRNA-like RNAs in the somatic tissues have been suggested (Yan et al. 2011; Morazzani et al. 2012; Rajasethupathy et al. 2012). We have investigated whether the piRNA-like reads in our many Drosophila head libraries come from the germline as a contaminant or are soma-specific. Most of the piRNA reads in our published head libraries show high similarity to germline piRNAs. However, piRNA-like reads from manually dissected heads are distinct from germline piRNAs, proving the presence of somatic piRNA-like small RNAs. We are currently asking the question whether these distinct piRNA-like reads in the heads are dependent on the Piwi family proteins, like the germline piRNAs.
324

Sequence and Target Specificity of the C. elegans Cell Fate Specification Factor POS-1: A Dissertation

Farley, Brian M. 09 August 2012 (has links)
In most metazoans, early embryogenesis is controlled by the translational regulation of maternally supplied mRNA. Sequence-specific RNA-binding proteins play an important role in regulating early embryogenesis, yet their specificities and regulatory targets are largely unknown. To understand how these RNA-binding proteins select their targets, my research focused on the C. elegans CCCH-type tandem zinc finger protein POS-1. Embryos lacking maternally supplied POS-1 die prior to gastrulation, and exhibit defects in the specification of pharyngeal, intestinal, and germline precursor cells. To identify the regulatory targets that contribute to the POS-1 mutant phenotype, we set out to determine the sequence specificity of POS-1 in vitro, and then use this information to identify regulatory targets in vivo. Using a candidate-based search, we identified a twelve-nucleotide fragment of the mex-3 3' untranslated region (3' UTR) to which POS-1 binds with high affinity. Using quantitative fluorescent electrophoretic mobility shift assays, I determined the affinity of the RNA-binding domain of POS-1 for a panel of single nucleotide mutations of this sequence, and then defined a consensus binding element based on this dataset. POS-1 recognizes the degenerate element UAU 2-3 RDN 1-3 G, where R is any purine (adenosine or guanine), and D is any base except cytosine. A bioinformatics analysis revealed the presence of this element in approximately 40% of C. elegans 3' UTRs, suggesting that POS-1 is capable of binding to and perhaps regulating many transcripts in vivo. POS-1 binding sites alone are not sufficient to pattern the expression of a reporter, suggesting that other factors may contribute to POS-1 specificity. To address the mechanism of POS-1-mediated translational regulation, I investigated the translational regulation of the C. elegans Notch homolog glp-1. Previous work demonstrated that glp-1 translation is repressed in the early embryo in a POS-1-dependent fashion, though it was not clear if this regulation was direct. The glp-1 3' UTR contains two POS-1 binding sites within five nucleotides of each other, and these sites are within a thirty nucleotide region of the 3' UTR required for proper spatiotemporal translation of glp-1. The POS-1 sites overlap with a negative regulatory element that is recognized by GLD-1, and a positive regulatory element recognized by an unknown factor. Both POS-1 and GLD-1 bind to an RNA containing these sites in vitro, and POS-1 competes with GLD-1 for binding. Both proteins are required for translational repression of a glp-1 3' UTR reporter in embryos. Furthermore, only one of the two POS-1 binding sites is required for repression, and the required site is wholly contained within a previously characterized positive regulatory element. Based on this, we propose that POS-1 does not regulate its targets by recruiting regulatory machinery, but instead by competing with factors that do. Thus, sites of POS-1 regulation are highly context dependent, which may contribute to POS-1 specificity.
325

Mdm2-p53 Signaling in Tissue Homeostasis and the DNA Damage Response: A Dissertation

Gannon, Hugh S. 28 June 2012 (has links)
The p53 transcription factor responds to various cellular stressors by regulating the expression of numerous target genes involved in cellular processes such as cell cycle arrest, apoptosis, and senescence. As these downstream pathways are harmful to the growth and development of normal cells when prolonged or deregulated, p53 activity needs to be under tight regulatory control. The Mdm2 oncoprotein is the chief negative regulator of p53, and many mouse models have demonstrated that absence of Mdm2 expression leads to constitutive p53 activation in a variety of cell types. While unregulated p53 can be deleterious to cells, functional p53 is essential for tumor suppression, as many human cancers harbor p53 mutations and p53 knockout mice rapidly develop spontaneous tumors. Therefore, the mechanisms that control p53 regulation by Mdm2 are critical to ensure p53 activity in the appropriate cellular context. Many genetically engineered mouse models have been created to analyze p53 and Mdm2 functions and these studies have yielded valuable insights into their physiological roles. This dissertation will describe the generation and characterization of novel mutant Mdm2 mouse models and their use to interrogate the roles of p53-Mdm2 signaling in tissue homeostasis and cell stress responses. Deletion of Mdm2 in epidermal progenitor cells of the skin and hair follicles resulted in progressive hair loss and decreased skin integrity, phenotypes that are characteristic of premature aging. Furthermore, p53 protein levels, p53 target gene expression, and cellular senescence were all upregulated in the skins of these mice, and epidermal stem cell numbers and function were diminished. These results indicate that Mdm2 is necessary to limit p53 activity in adult tissues to ensure normal stem cell function. Additional mouse models used to determine the role of Mdm2 phosphorylation will also be presented. DNA damage triggers an extensive cellular response, including activation of the ATM kinase. ATM activity is necessary for p53 protein stabilization and, therefore, p53 activation, but in vivo evidence suggests that phosphorylation of p53 itself had little effect on p53 stability. ATM was previously shown to phosphorylate MDM2 at serine residue 395 (394 in mice), and we generated knock-in mutant mouse models to study the role of this posttranslational modification in vivo. Absence of this phosphorylation site led to greatly diminished p53 stability and function in response to γ-irradiation and increased spontaneous tumorigenesis in mice. Conversely, a phosphomimic model demonstrated prolonged p53 activation in cells treated with γ-irradiation, which revealed that phosphorylation of this Mdm2 residue controls the duration of the DNA damage response. Therefore, these mouse models have uncovered new roles for the p53-Mdm2 regulatory axis in vivo and will be useful reagents in future studies of posttranslational modifications in oncogene and DNA damage-induced tumorigenesis.
326

Regulation of the NF-кB Precursor relish by the <em>Drosophila</em> I-кB Kinase Complex: A Dissertation

Erturk Hasdemir, Deniz 09 May 2008 (has links)
The innate immune system is the first line of defense against infectious agents. It is essential for protection against pathogens and stimulation of long-term adaptive immune responses. Therefore, deciphering the mechanisms of the innate immune system is crucial for understanding the integrated systems of host defense against microbial infections, which is conserved from insects to humans. Despite lacking a conventional adaptive immune system, insects can mount a robust immune response against a wide array of microbial pathogens. These innate immune mechanisms have been widely studied in Drosophila melanogaster, because of the model system’s powerful genetic, genomic and molecular tools. The Drosophila immunity relies on cellular and humoral innate immune responses to fight pathogens. The hallmark of the Drosophilahumoral immune response is the rapid induction of antimicrobial peptide genes in the fat body, the homolog of the mammalian liver. Expression of these antimicrobial peptide genes is controlled by two distinct immune signaling pathways, the Toll pathway and the IMD (immune deficiency) pathway. The Toll pathway is activated by fungal and Gram-positive bacterial infections, whereas the IMD pathway responds to Gram-negative bacteria. Both pathways culminate in activation of the Rel/NF-кB transcription factors DIF (Dorsal-related immunity factor), Dorsal and Relish, which in turn translocate to the nucleus to induce the antimicrobial peptide genes. DIF and Dorsal are activated by the Toll pathway and control induction of antimicrobial peptide genes such as Drosomycin. The NF-кB precursor Relish, which is composed of an N-terminal Rel homology domain and a C-terminal IкB-like domain, is activated by the IMD pathway and initiates transcription of antimicrobial peptide genes such as Diptericin. Although many components of the Drosophila immune signaling pathways have been identified, the detailed mechanisms of signal trans
327

Distinct Gene Circuits Control the Differentiation of Innate Versus Adaptive IL-17 Producing T Cells: A Dissertation

Malhotra, Nidhi 10 February 2012 (has links)
T lymphocytes are distinguished by the expression of αβ TCR or γδ TCR on their cell surface. The kinetic differences in the effector functions classifies γδ T cells as innate-like lymphocytes and αβ T cells as adaptive lymphocytes. Although distinct, αβ and γδ T cell lineages produce a common array of cytokines to mount an effective immune response against a pathogen. The production of cytokine IL-17 is a shared characteristic between the γδ T (Tγδ17) cells and the CD4 T (Th17) cells. γδ T cells develop into Tγδ17 cells in the thymus whereas CD4 T cells differentiate into Th17 cells in response to antigens in the peripheral lymphoid tissues. γδ T cells exported from the thymus, as pre-made effectors, are the early IL-17 producers compared with the late IL-17 producing Th17 cells. In this thesis we describe how TGFβ-SMAD2 dependent pathway selectively regulates Th17 cell differentiation but not Tγδ17 cells generation. We further illustrate the requirement of WNT-HMG box transcription factor (TF) signaling for the thymic programming of Tγδ17 cells. Cytokine TGFβ in co-operation with IL-6 induces the differentiation of Th17 cells. Conversely, TGFβ signaling also regulates the differentiation and maintenance of CD4+FOXP3+ regulatory T cells. The mechanism by which TGFβ signals synergize with IL-6 to generate inflammatory versus immunosuppressive T cell subsets is unclear. TGFβ signaling activates receptor SMADs, SMAD2 and SMAD3, which associate with a variety of nuclear factors to regulate gene transcription. Defining relative contributions of distinct SMAD molecules for CD4 T cell differentiation is critical for mapping the versatile intracellular TGFβ signaling pathways that tailor TGFβ activities to the state of host interaction with pathogens. We show here that SMAD2 is essential for Th17 cell differentiation and that it acts in part by modulating the expression of IL-6R on T cells. While mice lacking SMAD2 specifically in T cells do not develop spontaneous lymphoproliferative autoimmunity, Smad2-/- T cells are impaired in their response to TGFβ in vitro and in vivo and they are more pathogenic than controls when transferred into lymphopenic mice. These results demonstrate that SMAD2 is essential for TGFβ signaling in CD4+ T effector cell differentiation and that it possesses functional capabilities distinct from SMAD3. Although SMAD2 is essential for the differentiation of Th17 cells, TGFβ signaling via SMAD2 is not required for the thymic programming of innate Tγδ17 cells. Among different γδ T cells, Vγ2+ (V2) γδ T cells are the major IL-17 producing subsets. We demonstrate that Sry-high mobility group (HMG) box TFs regulate the development of V2 Tγδ17 cells. We show that the HMG box TF, SOX13 functions in a positive loop for the intrathymic generation of V2 Tγδ17 cells. SOX13 regulates the programming of Tγδ17 cells by controlling the expression of B-lymphoid kinase (BLK) in developing immature V2 γδ T cells. BLK is an Src-family kinase expressed by all Tγδ17 cells. Furthermore, we show another HMG box TF, TCF1, the nuclear effector of canonical WNT signaling, is the primary negative regulator of IL-17 production by all γδ T cells. We propose that the antagonism of SOX13 and TCF1 determines the generation of IL-17 producing γδ T cells. We also show that extrinsic cues from αβ T cells do not affect the generation of IL-17 producing γδ T cells. Using OP9-DL1 culture system, we demonstrate that the progenitors of V2 Tγδ17 cells are the c-Kit+ early thymic precursors.
328

IFN-α/β Induction by dsRNA and Toll-Like Receptors Shortens Allograft Survival Induced by Costimulation Blockade: A Dissertation

Thornley, Thomas B. 23 October 2006 (has links)
Costimulation blockade protocols are promising alternatives to the use of chronic immunosuppression for promoting long-term allograft survival. However, the efficacy of costimulation blockade-based protocols is decreased by environmental insults such as viral infections. For example, lymphocytic choriomeningitis virus (LCMV) infection at the time of costimulation blockade treatment abrogates skin allograft survival in mice. In this dissertation, we test the hypothesis that viruses shorten allograft survival by activating the innate immune system through pattern-recognition receptors (PRRs), such as toll-like receptors (TLRs). To investigate the role of innate immunity in shortening allograft survival, costimulation blockade-treated mice were co-injected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid, poly(I:C)), TLR4 (lipopolysaccharide, LPS), or TLR9 (CpG DNA) agonists, followed by transplantation with skin allografts 7 days later. Costimulation blockade prolonged skin allograft survival that was shortened in mice coinjected with TLR agonists. To investigate the underlying mechanisms of this observation, we used synchimeric mice, which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, co-administration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) upregulated CD44, and 3) failed to undergo apoptosis. We also demonstrate that costimulation blockade-treated CD8α-deficient mice exhibit prolonged allograft survival when co-injected with LPS. These data suggest that TLR agonists shorten allograft survival by impairing the apoptosis of alloreactive CD8+T cells. We further delineate the mechanism by which TLR agonists shorten allograft survival by demonstrating that LPS and poly(I:C) fail to shorten allograft survival in IFNRI- deficient mice. Interestingly, the ability of poly(I:C) to more potently induce IFN-α/β than LPS correlates with its superior abilities to shorten islet allograft survival and induce allo-specific CTL activity as measured by an in vivo cytotoxicity assay. The ability to shorten allograft survival and induce IFN-α/β is a TLR-dependent process for LPS, but is a TLR-independent process for poly(I:C). Strikingly, the injection of IFN-β impairs alloreactive CD8+T cell deletion and shortens allograft survival, similar to LPS and poly(I:C). These data suggest that LPS and poly(I:C) shorten allograft survival by inducing IFN-α/β through two different mechanisms. Finally, we present data showing that viruses (LCMV, Pichinde virus, murine cytomegalovirus and vaccinia virus) impair alloreactive CD8+T cell deletion and shorten allograft survival, in a manner comparable to LPS and poly(I:C). Similar to LPS, LCMV and MCMV exhibit an impaired ability to shorten allograft survival in MyD88-deficient mice. These data suggest that the MyD88 pathway is required for certain viruses and TLR-agonists to shorten allograft survival. In this dissertation, we present data supporting an important role for TLRs and IFN- α/β in shortening allograft induced by costimulation blockade. Our findings suggest that targeting these pathways during the peri-transplant period may enhance the efficacy of costimulation blockade protocols in the clinic.
329

The Molecular Mechanisms Underlying the Polarized Distribution of Drosophila Dscam in Neurons: A Dissertation

Yang, Shun-Jen 14 October 2008 (has links)
Neurons exhibit highly polarized structures, including two morphologically and functionally distinct domains, axons and dendrites. Dendrites and axons receive versus send information, and proper execution of each requires different sets of molecules. Differential distribution of membrane proteins in distinct neuronal compartments plays essential roles in neuronal functions. The major goal of my doctoral thesis was to study the molecular mechanisms that govern the differential distribution of membrane proteins in neurons, using the Drosophilalarval mushroom body (MB) as a model system. My work was initiated by an observation of differential distribution of distinct Dscam isoforms in neurons. Dscam stands for Down Syndrome Cell Adhesion Molecule, which is a Drosophila homolog of human DSCAM. According to genomic analysis, DrosophilaDscam gene can generate more than 38,000 isoforms through alternative splicing in its exons 4, 6, 9 and 17. All Dscam isoforms share similar domain structures, with 10 immunoglobulin domains and 6 fibronectin type III repeats in the ectodomain, a single transmembrane domain and a cytoplasmic endodomain. There are two alternative exons in exon 17 (17.1 and 17.2), which encodes Dscam’s transmembrane domain. Interestingly, in ectopic expression, Dscam isoforms carrying exon 17.1 (Dscam[TM1]) can be preferentially localized to dendrites and cell bodies, while Dscam isoforms carrying exon 17.2 (Dscam[TM2]) are distributed throughout the entire neuron including axons and dendrites. To unravel the mechanisms involved in the differential distribution of Dscam[TM1] versus Dscam[TM2], I conducted a mosaic genetic screening to identify the possible factors affecting dendritic distribution of Dscam[TM1], established an in vivoTARGET system to better distinguish the differential distribution of Dscam, identified the axonal and dendritic targeting motifs of Dscam molecules and further showed that Dscam’s differential roles in dendrites versus axons are correlated with its localization. Several mutants affecting dendritic distribution of Dscam[TM1] have been identified using a MARCM genetic screen. Three of these mutants (Dlis1, Dmn and p24) are components of the dynein/dynactin complex. Silencing of other dynein/dynactin subunits and blocking dynein function with a dominant-negative Glued mutant also resulted in mislocalization of Dscam[TM1] from dendrites to axons. However, microtubule polarity in the mutant axons was maintained. Taken together, this was the first demonstration that the dynein/dynactin complex is involved in the polarized distribution of membrane proteins in neurons. To further examine how dynein/dynactin is involved in the dendritic distribution of Dscam[TM1], I compromised dynenin/dynactin function with dominant-negative Glued and transiently induced Dscam[TM1] expression. The results suggested that dynein/dynactin may not be directly involved in the targeting of newly synthesized Dscam[TM1] to dendrites. Instead, it plays a role in maintaining dendritic restriction of Dscam[TM1]. Notably, dynein/dynactin dysfunction did not alter distribution of another dendritic transmembrane protein Rdl (Resistant to Dieldrin), supporting involvement of diverse mechanisms in distributing distinct molecules to the dendritic membrane. To identify the targeting motifs of Dscam, I incorporated the TARGET (Temporal and regional gene expression targeting) system into mushroom body (MB) neurons, and this allowed the demonstration of the differential distribution of Dscam[TM1] and Dscam[TM2] with more clarity than conventional overexpression techniques. Using the TARGET system, I identified an axonal targeting motif located in the cytoplasmic juxtamemebrane domain of Dscam[TM2]. This axonal targeting motif is dominant over the dendritic targeting motif located in Dscam’s ectodomain. Scanning alanine mutagenesis demonstrated that two amino acids in the axonal targeting motif were essential for Dscam’s axonal distribution. Interestingly, swapping the cytoplasmic juxtamembrane portions between TM1 and TM2 not only reversed TM1’s and TM2’s differential distribution patterns but also their functional properties in dendrites versus axons. My thesis research also involved studying endodomain diversity of Dscam isoforms. Besides the diversity originally found in the ectodomain and transmembrane domain of Dscam, my colleagues and I further demonstrated the existence of four additional endodomain variants. These four variants are generated by skipping or retaining exon 19 or exon 23 through independent alternative splicing. Interestingly, different Dscam endodomain isoforms are expressed at different developmental stages and in different areas of the nervous system. Through isoform-specific RNA interference, we showed the differential involvement of distinct Dscam endodomains in specific neuronal morphogenetic processes. Analysis of the primary sequence of the Dscam endodomain indicated that endodomain variants may confer activation of different signaling pathways and functional roles in neuronal morphogenesis. In Summary, my thesis work identified and characterized several previously unknown mechanisms related to the differential distribution of membrane proteins in neurons. I showed that there may be a dynein/dynactin-independent mechanism for selective transport of dendritic membrane proteins to dendrites. Second, dynein/dynactin plays a maintenance role in dendritic restriction of Dscam[TM1]. Third, different membrane proteins may require distinct combinations of mechanisms to be properly targeted and maintained in certain neuronal compartments. Further analysis of the mutants indentified from my genetic screen will definitely help to resolve the missing pieces of the puzzle. These findings provide novel mechanistic insight into the differential distribution of membrane proteins in polarized neurons.
330

Prediction, Prevention and Treatment of Virally Induced Type 1 Diabetes: A Dissertation

Kruger, Annie J. 29 April 2009 (has links)
Several viral infections have been associated with human type 1 diabetes (T1D), although it has proven difficult to unequivocally establish them as causative agents. In rodent models, however, viruses have definitely been established to cause T1D. The treatment of weanling BBDR rats with the combination of a TLR3 ligand, pIC, and an ssDNA parvovirus, KRV, precipitates T1D in nearly 100% of rats within a short, predictable timeframe. In this dissertation, we utilized the BBDR rat model to (1) identify early serum biomarkers that could predict T1D precipitated by viral induction and (2) test the efficacy of leptin, a therapeutic agent, which may have the ability to prevent diabetes onset, reverse new onset diabetes and prevent autoimmune recurrence of diabetes in rats transplanted with syngeneic islet grafts. Identification of biomarkers has long served as an invaluable tool for disease prediction. In BBDR rats, we identified an acute phase response protein, haptoglobin, as a potential biomarker for pIC + KRV induced T1D using the global proteomic profiling techniques, 2D gel analysis and iTRAQ. Upon validating this biomarker, we determined that haptoglobin was sensitive in predicting T1D in the pIC + KRV model, in which nearly 100% of the rats become diabetic, but not in models where diabetes expression was variable (KRV only or RCMV only models). However, analysis of the serum kinetics of haptoglobin and its functional capacity in the blood has given us insights into the potential role of early phase reactants in modulating virally mediated T1D. An alternative means of regulating T1D pathogenesis is through leptin. Leptin is a hormone with pleotropic roles in the body, particularly affecting energy metabolism and immune regulation. These characteristics make leptin an intriguing candidate for therapeutic testing in T1D models. Our studies have determined that high doses of leptin delivered via an adenovirus (AdLeptin) or alzet pump delivery system can prevent diabetes in > 90% of rats treated with pIC + KRV. We further showed that serum hyperleptinemia was associated with decreased body weight, decreased non-fasting serum insulin levels and lack of islet insulitis in pIC + KRV treated rats pretreated with AdLeptin compared with those pretreated with PBS. We discovered that hyperleptinemia induced a profound decrease in splenic weight and splenic cellularity, including reductions in CD4+ and CD8+ T cells, DC/MACs and B cells. These findings indicate a potential mechanism whereby hyperleptinemia protects rats from virally induced T1D through the promotion of peripheral immunosuppression. Among pIC + KRV treated rats, we have also found that leptin therapy can reverse hyperglycemia in a subset of new onset diabetics for up to 20 days. In the absence of exogenous insulin, leptin treatment of new onset diabetics prevented the rapid weight loss associated with osmotic diuresis, as well as the ketosis observed in vehicle treated diabetic rats. Overall, these findings point to the therapeutic value of leptin in maintaining glycemic control and preventing ketosis in an insulin deficient state, in the absence of exogenous insulin therapy. Additionally, we have also determined that AdLeptin treatment can prolong the survival of syngeneic islets transplanted into diabetic BBDR rats for up to 50 days post transplant. Although hyperleptinemia generated by AdLeptin was unable to prevent insulitis into islet grafts, this insulitis did not appear to be destructive as islet grafts continued to stain positively for insulin when compared with control rats whose grafts succumbed to recurrent autoimmunity. In the various therapeutic settings in which we have tested leptin treatment, we have found this hormone to have significant beneficial effects. These findings merit further evaluation of leptin as a therapeutic agent in human T1D.

Page generated in 0.079 seconds