• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aminoacetone synthetase of liver mitochondria.

Walsh, Robert Leo. January 1970 (has links) (PDF)
Thesis (M.Sc.)--University of Adelaide, Dept. of Biochemistry, 1971.
2

Semicarbazide-sensitive amine oxidase and vascular complications in diabetes mellitus : Biochemical and molecular aspects

Nordquist, Jenny January 2002 (has links)
<p>Plasma activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO; EC.1.4.3.6) has been reported to be high in disorders such as diabetes mellitus, chronic congestive heart failure and liver cirrhosis. Little is known of how the activity is regulated and, consequently, the cause for these findings is not well understood. Due to the early occurrence of increased enzyme activity in diabetes, in conjunction with the production of highly cytotoxic substances in SSAO-catalysed reactions, it has been speculated that there could be a causal relationship between high SSAO activity and vascular damage. Aminoacetone and methylamine are the best currently known endogenous substrates for human SSAO and the resulting aldehyde-products are methylglyoxal and formaldehyde, respectively. Both of these aldehydes have been shown to be implicated in the formation of advanced glycation end products (AGEs).</p><p>This thesis is based on studies exploring the regulation of SSAO activity and its possible involvement in the development of vascular damage. The results further strengthen the connection between high SSAO activity and the occurrence of vascular damage, since type 2 diabetic patients with retinopathy were found to have higher plasma activities of SSAO and lower urinary concentrations of methylamine than patients with uncomplicated diabetes. From studies on mice, it was also found that an SSAO inhibitor potently reduces the incorporation of methylamine-metabolite in the tissues. By quantifying SSAO-gene expression in alloxan-induced diabetes, increased transcription could be ruled out as a cause for the increased enzyme activity, thereby opening up for the possibility that the activity is regulated post-translationally. In fact, increased enzyme activity in adipose tissue was accompanied by decreased mRNA-levels, suggesting that the gene expression could be negatively controlled by the enzyme activity.</p>
3

Semicarbazide-sensitive amine oxidase and vascular complications in diabetes mellitus : Biochemical and molecular aspects

Nordquist, Jenny January 2002 (has links)
Plasma activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO; EC.1.4.3.6) has been reported to be high in disorders such as diabetes mellitus, chronic congestive heart failure and liver cirrhosis. Little is known of how the activity is regulated and, consequently, the cause for these findings is not well understood. Due to the early occurrence of increased enzyme activity in diabetes, in conjunction with the production of highly cytotoxic substances in SSAO-catalysed reactions, it has been speculated that there could be a causal relationship between high SSAO activity and vascular damage. Aminoacetone and methylamine are the best currently known endogenous substrates for human SSAO and the resulting aldehyde-products are methylglyoxal and formaldehyde, respectively. Both of these aldehydes have been shown to be implicated in the formation of advanced glycation end products (AGEs). This thesis is based on studies exploring the regulation of SSAO activity and its possible involvement in the development of vascular damage. The results further strengthen the connection between high SSAO activity and the occurrence of vascular damage, since type 2 diabetic patients with retinopathy were found to have higher plasma activities of SSAO and lower urinary concentrations of methylamine than patients with uncomplicated diabetes. From studies on mice, it was also found that an SSAO inhibitor potently reduces the incorporation of methylamine-metabolite in the tissues. By quantifying SSAO-gene expression in alloxan-induced diabetes, increased transcription could be ruled out as a cause for the increased enzyme activity, thereby opening up for the possibility that the activity is regulated post-translationally. In fact, increased enzyme activity in adipose tissue was accompanied by decreased mRNA-levels, suggesting that the gene expression could be negatively controlled by the enzyme activity.
4

Toxicidade de aminoacetona e células produtoras de insulina / Cytotoxity of aminoacetone on insulin-producing cells

Sartori, Adriano 23 February 2010 (has links)
Danos induzidos por hiperglicemia em tecidos no diabetes são caracterizados por quatro mecanismos conectados: aumento do fluxo metabólico através da via do poliol, ativação da proteína quinase C (PKC), aumento da atividade da via das hexosaminas e aumento da produção intracelular dos precursores dos produtos finais de glicação avançada (AGEs). Entre eles, os derivados de metilglioxal, um potente agente de modificação de proteínas e DNA, têm sido associados a complicações microvasculares no diabetes: nefropatia, retinopatia e neuropatia. O metilglioxal é produzido a partir das trioses fosfato, acetona e aminoacetona, um catabólito de treonina e glicina, gerado na matriz mitocondrial. A aminoacetona sofre oxidação enzimática, catalisada por aminoxidase sensível a semicarbazida (SSAO), ou química, catalisada por íons de cobre e ferro, produzindo metilglioxal, H2O2 e NH4 +. Sabendo que metilglioxal e H2O2 são capazes de induzir apoptose e/ou necrose em células produtoras de insulina (RINm5f) propomos uma possível atividade pró-oxidante da aminoacetona sobre células beta do pâncreas. O tratamento destas linhagens com aminoacetona/Cu(II) aumentou a morte celular, fluxo de Ca2+ intracelular, produção de NO, fragmentação do DNA, depleção dos níveis de glutationa reduzida (GSH), expressão gênica da proteína apoptótica Bax, enzimas antioxidantes - glutationa peroxidase (GPx), glutationa redutase (GRd), catalase e isoformas de superóxido dismutases (CuZnSOD e MnSOD) - e óxido nítrico sintase induzida (iNOS). Embora as concentrações normais e patológicas da aminoacetona, provavelmente seja muito menores que as usadas nos experimentos, sugerimos que, em tecidos de diabéticos, um acúmulo da aminoacetona em longo prazo pode conduzir a danos oxidativos e eventualmente morte das células beta do pâncreas / Tissue damages induced by hyperglycemia in diabetics are characterized by four linked mechanisms: increased flux through the polyol pathway, protein kinase C (PKC) activation, increased hexosamine pathway activity and intracellular production of advanced glycation end product (AGE) precursors. The production of AGEs by modifying proteins and DNA agent, such as methylglyoxal, has been implicated in microvascular complications in diabetes: nephropathy, retinopathy and neuropathy. Methylglyoxal is putatively produced in vivo from trioses phosphate, acetone and aminoacetone, a catabolite of threonine and glycine synthesized in the mitochondrial matrix. Aminoacetone has been reported to undergo semicarbazide sensitive amine oxidase- catalyzed and copper- and iron-catalyzed oxidations by molecular oxygen to methylglyoxal, NH4 + ion and H2O2. Considering that methylglyoxal and H2O2 have been found to promote apoptosis/necrosis to insulin-producing cells (RINm5f), we propose a possible pro-oxidant role of aminoacetone in pancreatic beta-cells. Treatment of RINm5f cells with aminoacetone plus Cu(II) ion promotes an increase of non-viable cells, influx of Ca2+ ions, NO production, DNA fragmentation, depletion of reduced glutathione (GSH) levels, and increased mRNA expression of pro-apoptotic protein (Bax), antioxidant enzymes - glutathione peroxidase (GPx), glutathione reductase (GRd), MnSOD, CuZnSOD and catalase - and inducible nitric oxide synthase (iNOS). Although both normal and pathological concentrations of aminoacetone are probably much lower than those used here, it is tempting to propose that excess aminoacetone in diabetic patients, at long term, may drive oxidative damage and eventually death of pancreatic beta-cells
5

Toxicidade de aminoacetona e células produtoras de insulina / Cytotoxity of aminoacetone on insulin-producing cells

Adriano Sartori 23 February 2010 (has links)
Danos induzidos por hiperglicemia em tecidos no diabetes são caracterizados por quatro mecanismos conectados: aumento do fluxo metabólico através da via do poliol, ativação da proteína quinase C (PKC), aumento da atividade da via das hexosaminas e aumento da produção intracelular dos precursores dos produtos finais de glicação avançada (AGEs). Entre eles, os derivados de metilglioxal, um potente agente de modificação de proteínas e DNA, têm sido associados a complicações microvasculares no diabetes: nefropatia, retinopatia e neuropatia. O metilglioxal é produzido a partir das trioses fosfato, acetona e aminoacetona, um catabólito de treonina e glicina, gerado na matriz mitocondrial. A aminoacetona sofre oxidação enzimática, catalisada por aminoxidase sensível a semicarbazida (SSAO), ou química, catalisada por íons de cobre e ferro, produzindo metilglioxal, H2O2 e NH4 +. Sabendo que metilglioxal e H2O2 são capazes de induzir apoptose e/ou necrose em células produtoras de insulina (RINm5f) propomos uma possível atividade pró-oxidante da aminoacetona sobre células beta do pâncreas. O tratamento destas linhagens com aminoacetona/Cu(II) aumentou a morte celular, fluxo de Ca2+ intracelular, produção de NO, fragmentação do DNA, depleção dos níveis de glutationa reduzida (GSH), expressão gênica da proteína apoptótica Bax, enzimas antioxidantes - glutationa peroxidase (GPx), glutationa redutase (GRd), catalase e isoformas de superóxido dismutases (CuZnSOD e MnSOD) - e óxido nítrico sintase induzida (iNOS). Embora as concentrações normais e patológicas da aminoacetona, provavelmente seja muito menores que as usadas nos experimentos, sugerimos que, em tecidos de diabéticos, um acúmulo da aminoacetona em longo prazo pode conduzir a danos oxidativos e eventualmente morte das células beta do pâncreas / Tissue damages induced by hyperglycemia in diabetics are characterized by four linked mechanisms: increased flux through the polyol pathway, protein kinase C (PKC) activation, increased hexosamine pathway activity and intracellular production of advanced glycation end product (AGE) precursors. The production of AGEs by modifying proteins and DNA agent, such as methylglyoxal, has been implicated in microvascular complications in diabetes: nephropathy, retinopathy and neuropathy. Methylglyoxal is putatively produced in vivo from trioses phosphate, acetone and aminoacetone, a catabolite of threonine and glycine synthesized in the mitochondrial matrix. Aminoacetone has been reported to undergo semicarbazide sensitive amine oxidase- catalyzed and copper- and iron-catalyzed oxidations by molecular oxygen to methylglyoxal, NH4 + ion and H2O2. Considering that methylglyoxal and H2O2 have been found to promote apoptosis/necrosis to insulin-producing cells (RINm5f), we propose a possible pro-oxidant role of aminoacetone in pancreatic beta-cells. Treatment of RINm5f cells with aminoacetone plus Cu(II) ion promotes an increase of non-viable cells, influx of Ca2+ ions, NO production, DNA fragmentation, depletion of reduced glutathione (GSH) levels, and increased mRNA expression of pro-apoptotic protein (Bax), antioxidant enzymes - glutathione peroxidase (GPx), glutathione reductase (GRd), MnSOD, CuZnSOD and catalase - and inducible nitric oxide synthase (iNOS). Although both normal and pathological concentrations of aminoacetone are probably much lower than those used here, it is tempting to propose that excess aminoacetone in diabetic patients, at long term, may drive oxidative damage and eventually death of pancreatic beta-cells
6

Estudo mecanístico de lesões oxidativas em biomoléculas por aminoacetona / Mechanistic study of oxidative lesions in biomolecules by aminoacetone

Dutra, Fernando 12 May 2003 (has links)
Aminoacetona (AA) é um catabólito de Thr e Gly que se acumula nas síndromes cri-du-chat e treoninemia. Atualmente, a oxidação de AA é considerada uma das fontes alternativas de metilglioxal (MG), agente citotóxico e genotóxico, em diabetes mellitus. Em estados de deficiência metabólica, tal como o diabetes, há acúmulo de AA que, por sua vez, sofre oxidação na presença de amino oxidases sensíveis à semicarbazida (SSAO) com a produção de MG, H2O2 e NH4+. As SSAO são enzimas Cu-dependentes, cujo mecanismo de atuação ainda é pouco conhecido e possui como substrato, além de AA, metilamina (endógena) e a benzilamina (xenobiótico). AA possui um grupo amino vicinal à uma carbonila, o que sugere que ela possa sofrer enolização e oxidação catalisada por metal, produzindo espécies reativas de oxigênio (EROs), inclusive radicais HO&#8226;. A presente tese tem por objetivo esclarecer o mecanismo pelo qual AA sofre oxidação aeróbica, direta e catalisada por metal, com concomitante produção de EROs. Foi dada ênfase à catalise por ferro por sua implicação em desordens associadas com diabetes. Serão apresentados resultados que implicam AA como promotora de danos a membrana de mitocôndrias isoladas, bem como a estrutura proteica de ferritina e ceruloplasmina (CP). Como ferritina e CP estão envolvidas na homeostase de ferro, os danos causados a estas proteínas por AA possivelmente afetam o estado redox de plasma de diabéticos, contribuindo significantemente para o aumento do estresse oxidativo no diabetes. / Aminoacetone (AA) is a threonine and glycine catabolite long known to accumulate in cri-du-chat and threoninemia syndromes and, more recent1y, implicated as a contributing source of methylglyoxal (MG) in diabetes mellitus. AcetylCoA overproduction in diabetes also leads to AA accumulation. AA as well as many other endogenous (e.g., methylamine) and xenobiotic amines (e.g., benzylamine) are oxidized by dioxygen in the presence of SSAO, a group of poorly understood plasma circulating and membrane bound Cu-dependent enzymes, yielding an aldehyde, H2O2 and NH4+ ions. With AA, SSAO activity paradoxally produces the cytotoxic and genotoxic MG. AA bears an amino group vicinal to the carbonyl function and therefore is expected to undergo phosphate-catalyzed enolization and iron-catalyzed oxidation to yield reactive oxygen species (ROS), including HO&#8226; radicals. The present work aims to clarify the mechanisms by which AA undergoes direct and metal-catalyzed aerobic oxidation to yield deleterious ROS, with emphasis on the catalytic role of iron given its well-known implications in diabetes. In the present work we show that ROS generated through the aerobic oxidation of AA are able to induce damage in isolated rat liver mitochondria as well as in horse spleen ferritin (HoSF) and human ceruloplasmin (CP). The current findings of changes in HoSF and CP may contribute to explain intracellular iron-induced oxidative stress during AA accumulation in diabetes mellitus patients.
7

Reações de halociclização de alquenil-benzil-sulfetos com bromo / Halocyclisation reactions of alkenyl benzyl sulfides with bromine

Dutra, Fernando 28 September 1998 (has links)
Há algum tempo, o laboratório de eletrossíntese orgânica do Instituto de Química vem estudando reações de halociclização na obtenção de compostos heterocíclicos de enxofre. No presente trabalho foram utilizados &#947;-&#948; e ;-&#948;-&#949; alquenil benzil sulfetos e realizados experimentos seguindo duas metodologias diferentes: a química (reações dos substratos com bromo) e a eletroquímica (reações dos substratos com bromo gerado eletroquimicamente). Os experimentos eletroquímicos são mais vantajosos porque dispensam a manipulação de bromo que, neste método, é gerado in situ através da oxidação eletroquímica de íons brometo. As misturas de reação obtidas nestes experimentos foram submetidas à oxidação com ácido m-cloro-perbenzóico ou oxone antes de isolar e caracterizar os produtos formados. Obteve-se resultados diferentes dependendo da metodologia empregada. Para os experimentos realizados com os 2-(1-ciclopentenil)-etilbenzil sulfeto (1a), 2-(1-cicloexenil)-etil-benzil sulfeto (1b) e (5-fenil-4pentenil)-benzil sulfeto (1c) em que foi utilizado bromo, os produtos principais foram os compostos heterocíclicos esperados a saber, hexa-hidro-3a-bromociclopenta[b]tiofeno-S-dióxido (6a), octa-hidro-3a-bromo-benzo[b]tiofeno-Sdióxido (6b) e 2-(1-bromo-1-fenilmetil)-tetra-hidro-tiofeno-S-dióxido (6c) respectivamente, porém o (3-metil-3-butenil)-benzil sulfeto (1d), nas mesmas condições, conduziu à (3,4-dibromo-3-metil-butil)-benzil sulfona (3d). Nos experimentos eletroquímicos, os resultados dependeram do eletrólito de suporte e do tipo de cela utilizados. Em cela dividida, utilizando Et4NClO4 na presença de pequenas quantidades de Et4NBr, o sulfeto (1b) forneceu como produto principal o composto heterocíclico (6b) e o sulfeto (1d) forneceu o perclorato de 3-bromo-3-metil-tetra-hidro-tiofeno-S-benzil sulfônio (4d). Quando apenas Et4NBr foi empregado o produto principai para o sulfeto (1b) foi o composto de adição de bromo à ligação dupla 2-(1,2-dibromocicloexil)-etil-benzil sulfona (7b). Este mesmo substrato fornece como produto principal a 2-(1,2-epóxi-1-cicloexil)-etil-benzil sulfona (11b) quando a eletrólise é realizada em cela não dividida. / The laboratory of organic electrosynthesis of the Instituto de Química has studied halocyclisation reactions to obtain of sulfur heterocyclic compounds. In the present work, &#947;-&#948; and &#948;-&#949; alkenyl benzyl sulfides were employed and experiments were carried out using two methodologies, a chemical (substrate reactions with bromine) and an electrochemical (substrate reactions with bromine generated electrochemically). The electrochemical experiments are more suitable because they avoid handling of bromine which is generated in situ by electrochemical oxidation. The crude reaction products were oxidized with m-chloroperbenzoic acid or oxone before their separation and characterization. Different results were obtained depending upon the methodology used. When 2-benzylthio-1-(1-cyclopentene)-ethane (1a), 2-benzylthio-1-(1-cyclo hexene)-ethane (1b) and 5-benzylthio-1-phenyl-1-pentene (1c) reacted with bromine the expected cyclic compounds hexahydro-3a-bromocyclopentan [b]thiophene-S-dioxide (6a), octahydro-3a-bromobenzo[b]thiophene-S-dioxide (6b) and 2-(1-bromo-1-phenylmethyl)tetrahydro-thiophene-S-dioxide (6c) respectively, were obtained, but (3-methyl-3-butenyl) benzyl sulfide (1d) yielded (3,4-dibromo-3-methylbutyl) benzyl sulfone (3d). In the electrochemical experiments, the structure of the products depends on the salt used as electrolyte and the type of cell used in the electrolyses. In a divided cell, when Et4NClO4 in the presence of small amounts of Et4NBr was employed, the main product from sulfide (1b) was compound (6b) whereas (3-methyl-3-butenyl) benzyl sulfide (1d) yielded 3-bromo-3-methyltetrahydrothiophene-S-benzyl sulfonium perchlorate (4d). Using only Et4NBr as electrolyte (1b) gave 2-(1,2-dibromocyclohexyl)ethyl benzyl sulfone (7b). The same substrate (1b) when electrolysed in an undivided cell, and otherwise same experimental conditions, afforded, as major product, 2-(1,2-epoxy-1-cyclohexyl)ethyl benzyl sulfone (11b).
8

Untersuchungen zum Threoninstoffwechsel bei Laborratten und Küken in Abhängigkeit von der Protein- und Threoninversorgung / Investigation on threonine metabolism with laboratory rats and chickens dependent on protein and threonine supply

Lee, Chul-Won 12 July 2001 (has links)
Ziel der vorliegenden Arbeit war es festzustellen, ob die unterschiedliche Versorgung mit Protein (XP), Threonin (Thr) und Glycin (Gly) bei einer limitierten Threoninversorgung einen Einfluss auf die Threonindehydrogenase-Aktivität (TDG-Aktivität) in der Leber von Küken und Laborratten hat. Dazu wurden 7 Versuche mit federgesexten männlichen Cobb-Küken und weißen Wistar-Ratten in verschiedenen Altersstufen und Lebendmassebereichen durchgeführt: Versuch 1: Küken vom 15. - 25. Lebenstag bei unterschiedlichen Rohproteingehalten. Die kalkulierten XP-Gehalte lagen bei 5,5%; 11,0%; 16,5%; 22,0%; 27,5% und 33,0%. Versuch 2: Küken vom 17. - 30. Lebenstag bei XP-Gehalten von 18,5% und 22,5% mit jeweils 2 Threoninstufen von 0,45% und 0,60% wahr fäcal verdaulichem Threonin. Versuch 3: Küken vom 10. - 20. Lebenstag bei XP-Gehalten von 16,5% und 22,0% und einer Steigerung des Threoningehaltes von 0,65% auf 0,79% Threonin bei 16,5% XP und 0,86% auf 1,05% Threonin bei 22,0% XP. Versuch 4: Küken vom 1. - 49. Lebenstag in Bodenhalten bei praxisnaher Phasenfütterung. Die Prüfung der Leber-Threonindehydrogenase erfolgte am 7., 21., 35. und 49. Lebenstag. Versuch 5: Küken vom 5. - 15. Lebenstag bei einem XP-Gehalt von einheitlich 22,0% und Glycingehalten von 0,64% und 0,98% und wahr fäcal verdaulichen Threoningehalten von 0,45% und 0,60% bei 0,64% bzw. 0,98% Glycingehalt. Die Gly+Ser-Gehalte betrugen insgesamt 1,55% bzw. 1,90%. Versuch 6: Weiße Wistar-Ratten im Lebendmassebereich von 106 - 140 g bei XP-Gehalten von 0%, 6,0%, 12,0%, 18,0% und 24,0%. Vesuch 7: Weiße Wistar-Ratten im Lebendmassebereich von 149 - 167 g und XP-Gehalten von 12,0% und 18,0% mit unterschiedlichen Threoningehalten von 0,28%, 0,42% und 0,72% bei 12,0% XP bzw. 0,42%, 0,52% und 0,72% bei 18,0% XP. Am Ende des jeweiligen Vesuches wurden die Lebern von jeweils 6 Tieren entnommen und für die Bestimmung der TDG-Aktivität in vitro aufbereitet. Die Threoninwirksamkeiten wurden aus N-Bilanzversuchen mit einem exponentiellen N-Verwertungsmodell abgeleitet. Folgende Ergebnisse wurden erzielt: 1. Durch die Erhöhung der XP-Gehalte stieg die TDG-Aktivität in der Kükenleber ab 22,0% XP in der Futtermischung trotz limitierter Threoninversorgung signifikant an. Die Threoninwirksamkeit war unverändert bis zu einem XP-Gehalt von 27,5% und fiel bei 33,0% XP signifikant ab. D. h. durch einen verstärkten Abbau von Threonin durch die TDG erfolgte eine Verminderung der Thr-Wirksamkeit bei der Futtermischungen mit hohem XP-Gehalt. 2. Bei einem XP-Gehalt von 18,5% und einem Anstieg der Thr-Konzentration von 0,45% auf 0,60% dThr zeigte sich kein Einfluss auf die TDG-Aktivität in der Kükenleber, wohl aber bei einem XP-Gehalt von 22,5% und einem Gehalt von 0,60% dThr war die TDG-Aktivität in der Kükenleber erhöht. Das könnte den Bereich angeben, in dem Threonin nicht mehr limitierend wirkt. 3. Bei einem Gehalt von 16,5% XP und einem Anstieg der Thr-Konzentration von 0,65% auf 0,79% wurde kein Einfluss auf die TDG-Aktivität in der Kükenleber ermittelt, dagegen stieg die TDG-Aktivität bei einem Gehalt von 22,0% XP und einer Erhöhung des Thr-Gehaltes von 0,86% auf 1,05% signifikant an. 4. Im Verlauf des Phasenfütterungsversuches zeigten sich altersabhängige Veränderungen der TDG-Aktivität, die mit Phasen eines besonders hohen metabolischen Bedarfes an Glycin erklärt weden können. 5. Bei einem XP-Gehalt von 22,0% (Gly + Ser-Gehalt 1,55%) führte die Erhöhung des Thr-Gehaltes von 0,45% auf 0,60% dThr zu einer mehreren Akkumulation von Gly in den Lebermitochondrien, jedoch nicht signifikantem Anstieg der TDG-Aktivität. Bei 1,90% Gly+Ser und 22,0% XP stieg die TDG-Aktivität nach Thr-Zulage signifikant an. Dieser Befund weist auf das Ende des Thr-Limitierungsbereiches hin. 6. Bei Laborratten lag die TDG-Aktivität bei einer proteinfreien Ration am niedrigsten, erhöhte sich bei einer XP-Steigerung bis 12,0% XP, verringerte sich geringfügig bis 18,0% XP und stieg von 18,0% bis 24,0% XP tendenziell an. Insgesamt beeinflusste das XP-Niveau die TDG-Aktivität aber nur zufällig. 7. Der Anstieg des Thr-Gehaltes von 0,28% auf 0,72% bei 12,0% XP bewirkte einen allmählichen Anstieg der TDG-Aktivität in den Rattenlebermitochondrien. Das trifft ebenfalls für die Futtermischung mit 18,0% XP zu, allerdings auf einem etwas höheren Niveau. Die TDG-Aktivität wurde nahezu ausschließlich durch die Aminoacetonakkumulierung moduliert. TDG-Aktivität und Thr-Wirksamkeit zeigten das Ende des Thr-Limitierungsbereiches an. Die in vitro TDG-Aktivitäten der Leber von Küken und Laborratten wird demnach nicht nur durch die Thr-Konzentrationen im Futter sondern auch vom XP-Gehalt und damit dem Angebot anderer Aminosäuren sowie vom Alter beeinflusst. Da offensichtlich Zusammenhänge zur unspezifischen Katabolisierungsrate anderer Aminosäuren bestehen, wird die Interpretation von TDG-Veränderungen (in vitro) erschwert. Bezüge zum Parameter Thr-Wirksamkeit sind mit Einschränkungen deutlich geworden und müssen, bevor quantitative Aussagen möglich sind, weiter erforscht werden.
9

Estudo mecanístico de lesões oxidativas em biomoléculas por aminoacetona / Mechanistic study of oxidative lesions in biomolecules by aminoacetone

Fernando Dutra 12 May 2003 (has links)
Aminoacetona (AA) é um catabólito de Thr e Gly que se acumula nas síndromes cri-du-chat e treoninemia. Atualmente, a oxidação de AA é considerada uma das fontes alternativas de metilglioxal (MG), agente citotóxico e genotóxico, em diabetes mellitus. Em estados de deficiência metabólica, tal como o diabetes, há acúmulo de AA que, por sua vez, sofre oxidação na presença de amino oxidases sensíveis à semicarbazida (SSAO) com a produção de MG, H2O2 e NH4+. As SSAO são enzimas Cu-dependentes, cujo mecanismo de atuação ainda é pouco conhecido e possui como substrato, além de AA, metilamina (endógena) e a benzilamina (xenobiótico). AA possui um grupo amino vicinal à uma carbonila, o que sugere que ela possa sofrer enolização e oxidação catalisada por metal, produzindo espécies reativas de oxigênio (EROs), inclusive radicais HO&#8226;. A presente tese tem por objetivo esclarecer o mecanismo pelo qual AA sofre oxidação aeróbica, direta e catalisada por metal, com concomitante produção de EROs. Foi dada ênfase à catalise por ferro por sua implicação em desordens associadas com diabetes. Serão apresentados resultados que implicam AA como promotora de danos a membrana de mitocôndrias isoladas, bem como a estrutura proteica de ferritina e ceruloplasmina (CP). Como ferritina e CP estão envolvidas na homeostase de ferro, os danos causados a estas proteínas por AA possivelmente afetam o estado redox de plasma de diabéticos, contribuindo significantemente para o aumento do estresse oxidativo no diabetes. / Aminoacetone (AA) is a threonine and glycine catabolite long known to accumulate in cri-du-chat and threoninemia syndromes and, more recent1y, implicated as a contributing source of methylglyoxal (MG) in diabetes mellitus. AcetylCoA overproduction in diabetes also leads to AA accumulation. AA as well as many other endogenous (e.g., methylamine) and xenobiotic amines (e.g., benzylamine) are oxidized by dioxygen in the presence of SSAO, a group of poorly understood plasma circulating and membrane bound Cu-dependent enzymes, yielding an aldehyde, H2O2 and NH4+ ions. With AA, SSAO activity paradoxally produces the cytotoxic and genotoxic MG. AA bears an amino group vicinal to the carbonyl function and therefore is expected to undergo phosphate-catalyzed enolization and iron-catalyzed oxidation to yield reactive oxygen species (ROS), including HO&#8226; radicals. The present work aims to clarify the mechanisms by which AA undergoes direct and metal-catalyzed aerobic oxidation to yield deleterious ROS, with emphasis on the catalytic role of iron given its well-known implications in diabetes. In the present work we show that ROS generated through the aerobic oxidation of AA are able to induce damage in isolated rat liver mitochondria as well as in horse spleen ferritin (HoSF) and human ceruloplasmin (CP). The current findings of changes in HoSF and CP may contribute to explain intracellular iron-induced oxidative stress during AA accumulation in diabetes mellitus patients.
10

Reações de halociclização de alquenil-benzil-sulfetos com bromo / Halocyclisation reactions of alkenyl benzyl sulfides with bromine

Fernando Dutra 28 September 1998 (has links)
Há algum tempo, o laboratório de eletrossíntese orgânica do Instituto de Química vem estudando reações de halociclização na obtenção de compostos heterocíclicos de enxofre. No presente trabalho foram utilizados &#947;-&#948; e ;-&#948;-&#949; alquenil benzil sulfetos e realizados experimentos seguindo duas metodologias diferentes: a química (reações dos substratos com bromo) e a eletroquímica (reações dos substratos com bromo gerado eletroquimicamente). Os experimentos eletroquímicos são mais vantajosos porque dispensam a manipulação de bromo que, neste método, é gerado in situ através da oxidação eletroquímica de íons brometo. As misturas de reação obtidas nestes experimentos foram submetidas à oxidação com ácido m-cloro-perbenzóico ou oxone antes de isolar e caracterizar os produtos formados. Obteve-se resultados diferentes dependendo da metodologia empregada. Para os experimentos realizados com os 2-(1-ciclopentenil)-etilbenzil sulfeto (1a), 2-(1-cicloexenil)-etil-benzil sulfeto (1b) e (5-fenil-4pentenil)-benzil sulfeto (1c) em que foi utilizado bromo, os produtos principais foram os compostos heterocíclicos esperados a saber, hexa-hidro-3a-bromociclopenta[b]tiofeno-S-dióxido (6a), octa-hidro-3a-bromo-benzo[b]tiofeno-Sdióxido (6b) e 2-(1-bromo-1-fenilmetil)-tetra-hidro-tiofeno-S-dióxido (6c) respectivamente, porém o (3-metil-3-butenil)-benzil sulfeto (1d), nas mesmas condições, conduziu à (3,4-dibromo-3-metil-butil)-benzil sulfona (3d). Nos experimentos eletroquímicos, os resultados dependeram do eletrólito de suporte e do tipo de cela utilizados. Em cela dividida, utilizando Et4NClO4 na presença de pequenas quantidades de Et4NBr, o sulfeto (1b) forneceu como produto principal o composto heterocíclico (6b) e o sulfeto (1d) forneceu o perclorato de 3-bromo-3-metil-tetra-hidro-tiofeno-S-benzil sulfônio (4d). Quando apenas Et4NBr foi empregado o produto principai para o sulfeto (1b) foi o composto de adição de bromo à ligação dupla 2-(1,2-dibromocicloexil)-etil-benzil sulfona (7b). Este mesmo substrato fornece como produto principal a 2-(1,2-epóxi-1-cicloexil)-etil-benzil sulfona (11b) quando a eletrólise é realizada em cela não dividida. / The laboratory of organic electrosynthesis of the Instituto de Química has studied halocyclisation reactions to obtain of sulfur heterocyclic compounds. In the present work, &#947;-&#948; and &#948;-&#949; alkenyl benzyl sulfides were employed and experiments were carried out using two methodologies, a chemical (substrate reactions with bromine) and an electrochemical (substrate reactions with bromine generated electrochemically). The electrochemical experiments are more suitable because they avoid handling of bromine which is generated in situ by electrochemical oxidation. The crude reaction products were oxidized with m-chloroperbenzoic acid or oxone before their separation and characterization. Different results were obtained depending upon the methodology used. When 2-benzylthio-1-(1-cyclopentene)-ethane (1a), 2-benzylthio-1-(1-cyclo hexene)-ethane (1b) and 5-benzylthio-1-phenyl-1-pentene (1c) reacted with bromine the expected cyclic compounds hexahydro-3a-bromocyclopentan [b]thiophene-S-dioxide (6a), octahydro-3a-bromobenzo[b]thiophene-S-dioxide (6b) and 2-(1-bromo-1-phenylmethyl)tetrahydro-thiophene-S-dioxide (6c) respectively, were obtained, but (3-methyl-3-butenyl) benzyl sulfide (1d) yielded (3,4-dibromo-3-methylbutyl) benzyl sulfone (3d). In the electrochemical experiments, the structure of the products depends on the salt used as electrolyte and the type of cell used in the electrolyses. In a divided cell, when Et4NClO4 in the presence of small amounts of Et4NBr was employed, the main product from sulfide (1b) was compound (6b) whereas (3-methyl-3-butenyl) benzyl sulfide (1d) yielded 3-bromo-3-methyltetrahydrothiophene-S-benzyl sulfonium perchlorate (4d). Using only Et4NBr as electrolyte (1b) gave 2-(1,2-dibromocyclohexyl)ethyl benzyl sulfone (7b). The same substrate (1b) when electrolysed in an undivided cell, and otherwise same experimental conditions, afforded, as major product, 2-(1,2-epoxy-1-cyclohexyl)ethyl benzyl sulfone (11b).

Page generated in 0.0493 seconds