1 |
La semicarbazide-sensitive amine oxydase : son rôle dans la différenciation cellulaire des chondrocytes et des cellules musculaires lisses vasculaires et son implication dans des pathologies articulaires et cardiovasculaires / Semicarbazide-sensitive amine oxidase : its role in cell differentiation of chondrocytes and vascular smooth muscle cells and its involvement in joint and cardiovascular diseasesFilip, Anna 10 December 2014 (has links)
La « semicarbazide-sensitive amine oxidase » (SSAO) catalyse la déamination oxydative des amines primaires en aldéhyde, peroxyde d’hydrogène et ammoniac. Elle participe à la différenciation cellulaires, l’inflammation et la transmigration leucocytaire à travers l’endothélium lymphatique. Nos objectifs ont été d’étudier le rôle de la SSAO (i) dans la différenciation chondrocytaire hypertrophique, en relation avec le développement de l’arthrose en utilisant des chondrocytes de rat en culture primaire et des genoux arthrosiques de patients (ii) dans le développement de l’athérosclérose en invalidant des souris ApoE-/- qui développent naturellement l’athérosclérose pour le gène de la SSAO. Au niveau articulaire, la SSAO a été détectée dans le cartilage de rat et humain. In vitro, la SSAO (activité et expression) augmentent au cours de la différenciation terminale de chondrocytes de rat. Son inhibition par le LJP1586 entraîne un retard de différenciation chondrocytaire. La SSAO augmente également dans les zones arthrosiques du cartilage humain parallèlement à l’augmentation de l’hypertrophie. La SSAO jouerait donc un rôle dans la différenciation terminale des chondrocytes (hypertrophie) possiblement via le transport de glucose et dans le développement de la maladie. Au niveau vasculaire, les souris femelles ApoE-/-SSAO-/- de 25 semaines présentent une augmentation de la surface des plaques d’athérome par rapport aux ApoE-/-. Ceci est associée à une diminution de l’expression d’α-actine dans le média sous les plaques et de smMHC dans l’aorte abdominale (AA) sans modification ni de l’infiltration des lymphocytes T; ni des monocytes/ macrophages dans la paroi artérielle, ni du profil cytokinique pro-/anti-inflammatoire dans la rate. A 15 semaines, les souris femelles ApoE-/-SSAO-/-, sm-MHC a diminué dans les AA de ces souris par rapport aux ApoE-/- ainsi qu’une réorientation du trafic des cellules immunitaires vers la paroi aortique sans modification significative de la surface des plaques a été détecté. La SSAO jouerait donc un rôle précoce dans le développement de l’athérosclérose via une modification du trafic des cellules immunitaires et du phénotype des CML dans la paroi / The semicarbazide-sensitive amine oxidase (SSAO) catalyzes the oxidative deamination of primary amines into aldehydes, hydrogen peroxide and ammonia. The SSAO was implicated in cellular differentiation, inflammation and transmigration of leukocyte through the lymphatic. The objectives of this work were to study the role of SSAO (i) in chondrocyte differentiation and in the development of osteoarthritis using rat chondrocyte primary cell culture and osteroarthritic samples from patients. (ii) in the development of atherosclerosis using ApoE-/- mice, which develop naturally atherosclerosis, invalidated for the SSAO gene. Concerning the articulation, the SSAO (expression and activity) was detected in the rat and human cartilage. In vitro, SSAO increases during chondrocyte terminal differentiation (hypertrophy) and the inhibition of its activity by LJP1586, decreases the level of differentiation. In human arthritic cartilage, SSAO was higher that in healthy cartilage, in association with an increase in hypertrophic markers. The SSAO plays a role in the terminal differentiation of chondrocytes and might be involved in the development of osteoarthritis. At the vascular level, 25 week-old female ApoE-/-SSAO-/- mice presented a 50% increase in plaque surface associated with an 80% decrease in α-actin expression in the media of aortic sinus and a decrease in sm-MCH in abdominal aortas (AA) compared to ApoE-/- mice. These results were not due neither to a modification of monocytes/ macrophages, Tcell infiltration in the plaque nor in a pro- or anti-inflammatory cytokine change in spleen. In 15 week-old ApoE-/-SSAO-/- mice, even if no modification of plaque surface was found, a decrease in sm-MHC was noticed in the AA from ApoE-/-SSAO-/- compare to ApoE-/- mice. More over, the immune cell trafficking was increased in the aortic wall of ApoE-/-SSAO-/- compared to ApoE-/- mice. Thus, SSAO is involved in the early development of atherosclerosis in changing the immune cell trafficking and the VSMC phenotype
|
2 |
Semicarbazide-sensitive amine oxidase and vascular complications in diabetes mellitus : Biochemical and molecular aspectsNordquist, Jenny January 2002 (has links)
<p>Plasma activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO; EC.1.4.3.6) has been reported to be high in disorders such as diabetes mellitus, chronic congestive heart failure and liver cirrhosis. Little is known of how the activity is regulated and, consequently, the cause for these findings is not well understood. Due to the early occurrence of increased enzyme activity in diabetes, in conjunction with the production of highly cytotoxic substances in SSAO-catalysed reactions, it has been speculated that there could be a causal relationship between high SSAO activity and vascular damage. Aminoacetone and methylamine are the best currently known endogenous substrates for human SSAO and the resulting aldehyde-products are methylglyoxal and formaldehyde, respectively. Both of these aldehydes have been shown to be implicated in the formation of advanced glycation end products (AGEs).</p><p>This thesis is based on studies exploring the regulation of SSAO activity and its possible involvement in the development of vascular damage. The results further strengthen the connection between high SSAO activity and the occurrence of vascular damage, since type 2 diabetic patients with retinopathy were found to have higher plasma activities of SSAO and lower urinary concentrations of methylamine than patients with uncomplicated diabetes. From studies on mice, it was also found that an SSAO inhibitor potently reduces the incorporation of methylamine-metabolite in the tissues. By quantifying SSAO-gene expression in alloxan-induced diabetes, increased transcription could be ruled out as a cause for the increased enzyme activity, thereby opening up for the possibility that the activity is regulated post-translationally. In fact, increased enzyme activity in adipose tissue was accompanied by decreased mRNA-levels, suggesting that the gene expression could be negatively controlled by the enzyme activity.</p>
|
3 |
Semicarbazide-sensitive Amine Oxidase (SSAO) – Regulation and Involvement in Blood Vessel Damage with Special Regard to Diabetes : A Study on Mice Overexpressing Human SSAOGöktürk, Camilla January 2004 (has links)
<p>Semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6) belongs to a family of copper-containing amine oxidases. SSAO exists as a membrane bound protein in endothelial-, smooth muscle-, and adipose cells as well as soluble in plasma. SSAO catalyses oxidative deamination of primary monoamines, which results in the production of corresponding aldehydes, hydrogen peroxide and ammonia. These compounds are very reactive and potentially cytotoxic, and are able to induce vascular damage if produced in high levels. Patients with diabetes mellitus, and with diabetic complications in particular, have a higher SSAO activity in plasma compared to healthy controls. It has therefore been speculated that high SSAO activity is involved in the development of vascular complications associated with diabetes. The aim of this thesis is to investigate the importance of SSAO in the development of disorders of a vascular origin. We have studied the transcriptional regulation of the SSAO gene, by inducing diabetes in NMRI and in transgenic mice, overexpressing the human form of SSAO in smooth muscle cells. We found that the increase in SSAO activity in diabetes is accompanied by reduced mRNA levels of the endogenous mouse gene, suggesting a negative feedback on the transcription of the SSAO gene. In addition, the transgenic mice exhibited an abnormal phenotype in the elastic tissue of aorta and renal artery. These mice have a lower mean artery pressure and an elevated pulse pressure. These results indicate that high SSAO activity in smooth muscle cells is associated with a change in the morphology of large arteries. This is likely contributing to the development of vascular complications in diabetes.</p>
|
4 |
Semicarbazide-sensitive amine oxidase and vascular complications in diabetes mellitus : Biochemical and molecular aspectsNordquist, Jenny January 2002 (has links)
Plasma activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO; EC.1.4.3.6) has been reported to be high in disorders such as diabetes mellitus, chronic congestive heart failure and liver cirrhosis. Little is known of how the activity is regulated and, consequently, the cause for these findings is not well understood. Due to the early occurrence of increased enzyme activity in diabetes, in conjunction with the production of highly cytotoxic substances in SSAO-catalysed reactions, it has been speculated that there could be a causal relationship between high SSAO activity and vascular damage. Aminoacetone and methylamine are the best currently known endogenous substrates for human SSAO and the resulting aldehyde-products are methylglyoxal and formaldehyde, respectively. Both of these aldehydes have been shown to be implicated in the formation of advanced glycation end products (AGEs). This thesis is based on studies exploring the regulation of SSAO activity and its possible involvement in the development of vascular damage. The results further strengthen the connection between high SSAO activity and the occurrence of vascular damage, since type 2 diabetic patients with retinopathy were found to have higher plasma activities of SSAO and lower urinary concentrations of methylamine than patients with uncomplicated diabetes. From studies on mice, it was also found that an SSAO inhibitor potently reduces the incorporation of methylamine-metabolite in the tissues. By quantifying SSAO-gene expression in alloxan-induced diabetes, increased transcription could be ruled out as a cause for the increased enzyme activity, thereby opening up for the possibility that the activity is regulated post-translationally. In fact, increased enzyme activity in adipose tissue was accompanied by decreased mRNA-levels, suggesting that the gene expression could be negatively controlled by the enzyme activity.
|
5 |
Semicarbazide-sensitive Amine Oxidase (SSAO) – Regulation and Involvement in Blood Vessel Damage with Special Regard to Diabetes : A Study on Mice Overexpressing Human SSAOGöktürk, Camilla January 2004 (has links)
Semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6) belongs to a family of copper-containing amine oxidases. SSAO exists as a membrane bound protein in endothelial-, smooth muscle-, and adipose cells as well as soluble in plasma. SSAO catalyses oxidative deamination of primary monoamines, which results in the production of corresponding aldehydes, hydrogen peroxide and ammonia. These compounds are very reactive and potentially cytotoxic, and are able to induce vascular damage if produced in high levels. Patients with diabetes mellitus, and with diabetic complications in particular, have a higher SSAO activity in plasma compared to healthy controls. It has therefore been speculated that high SSAO activity is involved in the development of vascular complications associated with diabetes. The aim of this thesis is to investigate the importance of SSAO in the development of disorders of a vascular origin. We have studied the transcriptional regulation of the SSAO gene, by inducing diabetes in NMRI and in transgenic mice, overexpressing the human form of SSAO in smooth muscle cells. We found that the increase in SSAO activity in diabetes is accompanied by reduced mRNA levels of the endogenous mouse gene, suggesting a negative feedback on the transcription of the SSAO gene. In addition, the transgenic mice exhibited an abnormal phenotype in the elastic tissue of aorta and renal artery. These mice have a lower mean artery pressure and an elevated pulse pressure. These results indicate that high SSAO activity in smooth muscle cells is associated with a change in the morphology of large arteries. This is likely contributing to the development of vascular complications in diabetes.
|
Page generated in 0.0254 seconds