• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extension de la méthode SmEdA par la prise en compte des matériaux dissipatifs en moyennes fréquences / Extension of the SmEdA method by taking into account dissipative materials at medium frequencies

Hwang, HaDong 05 June 2015 (has links)
Le projet CLIC (City Lightweight Innovative Cab) dans lequel s’inscrit cette thèse de doctorat vise à développer une cabine de camion allégée sans dégrader les performances vibratoires et acoustiques. Pour cela il est nécessaire d’établir dans un premier temps un modèle de prédiction vibroacoustique du système couplé structure/espace intérieur incluant l’influence des matériaux dissipatifs (amortissement ou absorption) dans le domaine des moyennes fréquences. Les méthodes basées sur les éléments finis et les approches statistiques les plus couramment utilisées étant peu adaptées pour ce domaine de fréquence (coût de calcul important, méthodes peu flexibles), nous utiliserons le formalisme de la méthode SmEdA (Statistical modal Energy distribution Analysis). L’objectif principal de cette thèse de doctorat est dès lors, d’étendre cette méthode à la prise en compte de l’effet d’amortissement induit par des matériaux dissipatifs. La méthodologie se divise en trois étapes: 1. Les modèles équivalents des matériaux dissipatifs sont établis: (1) un modèle de plaque équivalent pour décrire la plaque amortie par un ou plusieurs patch(s) viscoélastique(s) et (2) un modèle de fluide équivalent pour décrire un matériau poreux agissant dans la cavité. 2. Chaque sous-système amorti est modélisé par éléments finis. Les méthodes MSE (Modal Strain Energy) et MSKE (Modal Strain Kinetic Energy) sont ensuite utilisées pour estimer les facteurs de perte modaux de chaque sous-système. 3. Le calcul SmEdA est effectué sur le système couplé en prenant en compte les facteurs de pertes modaux de chaque sous-système estimés dans la deuxième étape. Le point d’excitation est appliquée à la plaque, en supposant la force stationnaire et large bande. Afin de valider la méthodologie proposée un cas semi-complexe composé d’une plaque rectangulaire couplée à une cavité parallélépipédique est considéré. Ce système peut être utilisé pour étudier l’interaction vibroacoustique entre la structure de la cabine et l’intérieur de l’habitacle. Deux cas d’amortissement sont étudiés pour le système semi-complexe plaque-cavité: (1) un cas où la plaque est amortie avec un (ou plusieurs) patch(s) viscoélastique(s) et (2) un cas où un matériau poreux est placé dans la cavité. Le problème vibroacoustique est pour chaque cas modélisé suivant les trois étapes proposées et analyses dans le formalisme de la méthode SmEdA. Les résultats sont ensuite comparés au cas de référence (sans matériau dissipatif). La dernière partie de la thèse porte sur la validation expérimentale pour chaque cas test de la méthodologie numérique proposée. a mobilité d’éntrée, la puissance injectée et les énergies des sous-systèmes sont comparées aux prédictions numériques. Enfin les facteurs de pertes modaux des sous-systèmes estimés par les méthodes MSE et MSKE sont comparés aux résultats expérimentaux obtenus par la méthode d’analyse modale à haute résolution (méthode ESPRIT). / The project CLIC (City Lightweight Innovative Cab) aims to develop a lighter-weighted truck that maintains NVH performances of the initial design. This PhD research is then to establish a vibroacoustic prediction model of a complex structure-bounded fluid system (cabin structure coupled to cabin space) including dissipative treatments (damping or absorbing materials) for the mid-frequency domain. Since most commonly used element based and statistical methods are not suitable for this frequency domain, a proper prediction tool, which should be flexible in modeling capabilities and feasible in computational cost, must be implemented. The SmEdA (Statistical modal Energy distribution Analysis) method is considered in this thesis to comply with these requirements. The main objective of this research is to extend this method for taking account of the damping effect induced by dissipative materials. Development and validation of the methodology are carried out. 1. Dissipative materials are represented by simplified equivalent models: (1) the equivalent single layer model for describing the plate covered with a viscoelastic layer and (2) the equivalent fluid model for describing a porous material into the cavity. 2. Each subsystem including the equivalent models of the dissipative materials is modeled with FEM(Finite Element Model). The FE matrices including the energy dissipation are then computed. The MSE (Modal Strain Energy) and MSKE (Modal Strain Kinetic Energy) methods are used to estimate the modal damping loss factor of each subsystem mode. 3. The SmEdA calculation is performed on a whole system considering the modal damping loss factors estimated in the second step for each subsystem. The power is injected into the plate at a localized point by the stationary white noise force and subsequently, the SmEdA parameters are computed. To validate the proposed methodology, laboratory test cases of the structure-fluid problem composed of a rectangular plate coupled to a parallelepipedic cavity are considered. Such system can be used to study the vibroacoustic interaction between structure and fluid. Two damped test cases of the plate-cavity system are studied: (1) a system with a viscoelastic damping pad on the plate and (2) a system with a composite fibre in the cavity. The damped test cases are modeled following the three steps and are analyzed in the framework of SmEdA. The results are then compared to the original case with no damping treatment. The last part of the thesis presents an experimental validation of the numerical computation results on each test case. Measured quantities such as input mobility, injected power and subsystem energies are compared to the numerical predictions. The modal damping loss factors of the damped subsystems estimated with MSE and MSKE methods are compared to the experimental results estimated by a high-resolution modal analysis method (ESPRIT method).
12

Contrôle de vibrations large bande à l’aide d’éléments piézoélectriques utilisant une technique non-linéaire / Broadband vibration control using nonlinearly interfaced piezoelectric elements

Yan, Linjuan 04 October 2013 (has links)
Afin de limiter les contraintes dans les matériaux pour accroître leur durée de vie et améliorer la sécurité des structures (par exemple dans les transports), ainsi que d’améliorer le confort des utilisateurs, le contrôle de vibrations mécaniques et leur amortissement a fait l’objet de nombreuses recherche scientifiques depuis de nombreuses décennies. De plus, la prolifération récente des matériaux dits « intelligents » couplant plusieurs disciplines de la physique telles que la mécanique et l’électricité a permis l’élaboration de techniques de contrôle de vibration fiables, robustes et performantes tout en étant très intégrables, permettant ainsi de disposer de méthodes totalement adaptées aux système embarqués ou aux structures où les contraintes d’encombrement sont relativement restrictives. Notamment, il a récemment été proposé l’utilisation de techniques non linéaires basées sur une commutation synchronisée d’éléments piézoélectriques sur une impédance afin d’amélioration la conversion d’énergie mécanique sous forme électrique et ainsi de disposer de systèmes de contrôle de vibrations très performants et intégrables. Néanmoins, du fait du principe de cette commutation synchronisée avec la déformation, le contrôle de vibrations large bande, très présents dans les environnements réels, conduit à une dégradation des performances de ces techniques. L’objectif des travaux rapportés dans cette thèse consiste à proposer et à étudier théoriquement et expérimentalement des approches dérivées de ces techniques mais totalement adaptées au large bande. Ainsi, après une introduction relatant l’état de l’art en termes de contrôle vibratoire, la première technique exposée dans cette thèse propose d’utiliser un filtrage spatial permettant de séparer les modes de vibrations pour ensuite connecter de manière appropriée des éléments piézoélectriques afin de pouvoir simultanément contrôler plusieurs modes de vibrations en flexion. La deuxième méthode pour disposer de systèmes de contrôle de vibrations efficaces se base sur la combinaison d’amortisseurs à masse accordée avec l’approche non-linéaire afin d’améliorer le pouvoir d’amortissement par un contrôle supplémentaire des transferts énergétiques via le couplage électromécanique, conduisant à une méthode efficace, robuste et pouvant être installée facilement. La troisième et dernière approche consiste à utiliser les propriétés remarquables des structures périodiques en les couplant avec l’approche non-linéaire, cette dernière permettant une augmentation de l’amortissement et un élargissement significatif des bandes fréquentielles réduisant significativement l’amplitude de l’onde. Enfin, une conclusion générale exposera les principaux résultats obtenus et proposera des pistes d’évolution des concepts exposés. / In order to protect structures, extend their lifespan and decrease the incomfort resulting from undesired vibrations, many works have been reported for reducing vibrations. Along with the development of smart materials such as piezoelectric materials which are extensively used for vibration control and noise reduction due to their unique features (high integrability, compactness, light weight and high bandwidth), control systems can be designed in a more compact and simple form. Additionally, due to the conversion between mechanical energy and electrical energy, vibrations can be effectively attenuated by electromechanical approaches. Synchronized Switch Damping on Inductor (SSDI) technique attracted lot of attentions as an effective semi-passive technique which can artificially increase the converted energy by nonlinear voltage inversion process, thus allowing superior control performance compared to passive technique with low power requirement and simple control algorithm. Based on this semi-passive control technique, the objectives of this work are threefold. The first aim is improving the multimodal/broadband control performance of SSDI. An enhanced strategy based on spatial filtering according to the mode shapes of the vibrating structure is proposed. In order to separate the uninterested modes and effectively damp the targeted modes, sum and different switches respectively based on the sum of the piezovoltages of two anti-symmetrically bonded patches and the voltage difference of the two symmetrically bonded piezoelectric elements are introduced. Since the vibration modes can be spatially filtered by these connections, multimodal vibrations can be damped significantly and simultaneously as the sum and difference switches are employed, with an increase of total inversion coefficient. Then, electromechanical TMD (tuned mass damper) featuring piezoelectric materials combined with the semi-passive nonlinear technique SSDI is presented. Using this electromechanical semi-passive nonlinear TMD, the mechanical energy is not only transferred between host structure and TMD device but also converted as electrical energy stored in the piezoelectric patches and/or dissipated in the connected circuit, which allows excellent damping performance for limiting the vibrations. The last investigated method consists in electromechanical periodic structures featuring the nonlinear switching interface. Such a structure can effectively attenuate the elastic waves and damp the vibration in a wider frequency band since it has the capability of filtering propagative waves within stop bands attributed to the structural periodicity and the superior damping ability which is attributed to the nonlinear voltage inversion process that increases the voltage amplitude and decreases the phase between voltage and speed. Finally, a conclusion proposes a summary of the main results obtained in this thesis, as well as new extensions and ways of the proposed techniques.
13

Monofilament entangled materials : relationship between microstructural properties and macroscopic behaviour / Matériaux monofilamentaires enchevêtrés : étude des relations microstructure-propriétés mécaniques

Courtois, Loïc 13 December 2012 (has links)
Les matériaux architecturés attirent de plus en plus d’attentions de par leur capacité à combiner différentes propriétés ciblées. Dans ce contexte, les matériaux enchevêtrés, et plus particulièrement les matériaux monofilamentaires enchevêtrés, présentent des propriétés intéressantes en terme de légèreté, de ductilité, et de facteur de perte. En raison de l’architecture interne complexe de ces matériaux, leur caractérisation et la compréhension des mécanismes de déformation nécessitent une méthodologie adaptée. Dans cette étude, l’enchevêtrement est réalisé manuellement pour différents fils d’acier et soumis à une compression oedométrique. De manière à étudier le comportement sous charge de ce type de matériaux, un dispositif de compression uniaxiale guidée a été mis en place dans le tomographe. Il est ainsi possible de suivre, à l’aide de mesures quantitatives, la déformation de l’échantillon et l’évolution du nombre de contacts pour différentes fraction volumiques. L’utilisation de ces données microstructurales a permis un meilleure compréhension du comportement mécanique de tels enchevêtrements. Une rigidité pouvant varier de 20 à 200 MPa en fonction des paramètres de mise en forme (diamètre et forme du fil, fraction volumique, matériau constitutif) a été déterminé. Un matériau homogène de rigidité plus faible a pu être obtenu en pré-déformant le fil sous forme de ressort avant enchevêtrement. Le facteur de perte du matériau a ensuite été mesuré à la fois sous chargement statique et dynamique. L’analyse mécanique dynamique a mis en évidence la capacité de ce matériau à absorber de l’énergie avec une valeur de facteur de perte d’environ 0.25. Les propriétés mécaniques du matériau ont tout d’abord été modélisées analytiquement par un modèle de poutres et un bon accord avec les résultats expérimentaux a pu être obtenu en définissant un paramètre d’orientation equivalent, spécifique à la compression oedométrique de matériaux enchevêtrés. En parallèle, un modéle éléments discrets a été developé afin de simuler le comportement en compression de matériaux monofilamentaires enchevêtrés. Ce modèle s’appuie sur une discrétisation du fil en éléments sphériques, acquise à partir de données de tomographie. Bien que seul le comportement élastique du fil constitutif ait été pris en compte, une bonne adéquation entre résultats numériques et expérimentaux a été obtenu en ajustant les coefficients de frottement du modèle. / Playing with the architecture of a material is a clever way of tailoring its properties for multi-functional applications. A lot of research have been made, in the past few years, on what is now referred to as “architectured materials” (metal foams, entangled materials, steel wool, etc), mostly for their capacity to be engineered in order to present specific properties, inherent to their architecture. In this context, some studies have been carried out concerning entangled materials but only a few on monofilament entangled materials. Such a material, with no filament ends, could exhibit interesting properties for shock absorption, vibration damping and ductility. In this study, entanglements were manually produced, using different types of wire, and submitted to constrained (inside a PTFE die) in-situ compressive tests within the laboratory tomograph. This technique enabled a 3D, non destructive, microstructural characterization of the complex architecture of these materials, along with the analysis of their macroscopic mechanical properties. The stiffness of this material was found to be in a 20-200 MPa range and homogeneous samples could be obtained, while lowering their stiffness, by pre-deforming the initial wire as a spring. Damping measurements were performed using different types of entanglements (constitutive materials, volume fraction, wire diameter, wire shape) under both monotonic and dynamic loadings and directly linked to the measurements of the number of contacts. The Dynamic Mechanical Analysis underlined the great capacity of this material to absorb energy with a loss factor of about 0.25 and damping was found to decrease with the stiffness of the entanglement. The mechanical properties of this material were first modeled using an analytical “beam” model based on the experimental evolution of the mean distance between contacts and a good agreement was found with the experimental results. In parallel, a Discrete Element Method was used in order to model the compressive behaviour of Monofilament Entangled Materials. Although purely elastic properties were taken into account in the model, a very good agreement with the experimental results was obtained by adjusting the friction coefficients of the model. This tends to prove that the plasticity of these entangled materials is rather due to the structure (friction) than to the constitutive material itself.
14

Contrôle de vibrations large bande à l'aide d'éléments piézoélectriques utilisant une technique non-linéaire

Yan, Linjuan 04 October 2013 (has links) (PDF)
Afin de limiter les contraintes dans les matériaux pour accroître leur durée de vie et améliorer la sécurité des structures (par exemple dans les transports), ainsi que d'améliorer le confort des utilisateurs, le contrôle de vibrations mécaniques et leur amortissement a fait l'objet de nombreuses recherche scientifiques depuis de nombreuses décennies. De plus, la prolifération récente des matériaux dits " intelligents " couplant plusieurs disciplines de la physique telles que la mécanique et l'électricité a permis l'élaboration de techniques de contrôle de vibration fiables, robustes et performantes tout en étant très intégrables, permettant ainsi de disposer de méthodes totalement adaptées aux système embarqués ou aux structures où les contraintes d'encombrement sont relativement restrictives. Notamment, il a récemment été proposé l'utilisation de techniques non linéaires basées sur une commutation synchronisée d'éléments piézoélectriques sur une impédance afin d'amélioration la conversion d'énergie mécanique sous forme électrique et ainsi de disposer de systèmes de contrôle de vibrations très performants et intégrables. Néanmoins, du fait du principe de cette commutation synchronisée avec la déformation, le contrôle de vibrations large bande, très présents dans les environnements réels, conduit à une dégradation des performances de ces techniques. L'objectif des travaux rapportés dans cette thèse consiste à proposer et à étudier théoriquement et expérimentalement des approches dérivées de ces techniques mais totalement adaptées au large bande. Ainsi, après une introduction relatant l'état de l'art en termes de contrôle vibratoire, la première technique exposée dans cette thèse propose d'utiliser un filtrage spatial permettant de séparer les modes de vibrations pour ensuite connecter de manière appropriée des éléments piézoélectriques afin de pouvoir simultanément contrôler plusieurs modes de vibrations en flexion. La deuxième méthode pour disposer de systèmes de contrôle de vibrations efficaces se base sur la combinaison d'amortisseurs à masse accordée avec l'approche non-linéaire afin d'améliorer le pouvoir d'amortissement par un contrôle supplémentaire des transferts énergétiques via le couplage électromécanique, conduisant à une méthode efficace, robuste et pouvant être installée facilement. La troisième et dernière approche consiste à utiliser les propriétés remarquables des structures périodiques en les couplant avec l'approche non-linéaire, cette dernière permettant une augmentation de l'amortissement et un élargissement significatif des bandes fréquentielles réduisant significativement l'amplitude de l'onde. Enfin, une conclusion générale exposera les principaux résultats obtenus et proposera des pistes d'évolution des concepts exposés.

Page generated in 0.1529 seconds