• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 48
  • 18
  • 18
  • 13
  • 13
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Reduzierung der Belastung des Textilveredlungsabwassers durch eine kombinierte anaerobe, aerobe Behandlung hochkonzentrierter Abwasserteilströme

Sarsour, Jamal. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Stuttgart.
22

Développement d'une unité pilote de bioraffinerie permettant la mixogenèse en continu à partir de la biomasse non alimentaire via la fermentation anaérobie mésophile / Development of a biorefinery pilot permitting the continuous mixogenesis from non food biomass through mesophilic anaerobic fermentation

Pessiot, Jérémy 11 December 2014 (has links)
Les réserves de pétrole sont sur le déclin, les prix des ressources fossiles fluctuent et le CO 2 dégagé par leur consommation contribue inéluctablement au réchauffement climatique. Ce phénomène, conduit notre société vers l'utilisation accrue de biomasse pour la génération d'énergie, de composés chimiques et de matériaux. La réduction des déchets est considérée comme indissociable de cette transition énergétique et en opposition aux préjugés, l’accroissement des déchets organiques peut être bénéfique dans cette recherche de solutions alternatives. En effet, cela conduit à la génération de grandes quantités de matières qui peuvent représenter de potentielles ressources. De plus, changer le statut des déchets en coproduits pour la production de bioénergies n’entre pas en concurrence avec les filières alimentaires et cela constitue un des principaux enjeux des biotechnologies. Sous certaines conditions, les bioconversions anaérobies représentent des procédés d’ingénierie prometteurs pour accomplir le double enjeu de la valorisation des coproduits et de la production de molécules d’intérêt énergétique et chimique (biocarburants, chimie verte...). En revanche, l’innovation dans les biotechnologies blanches est nécessaire pour la production robuste, performante, rentable et environnementalement acceptable de biomolécules à partir de ressources renouvelables. Dans ce contexte, la société AFYREN a été pensée et créée pour répondre à ce défi mondial via sa technologie « tout en un », AFYNERIE, qui s’inspire de la nature et des sciences. L’objectif premier de ce travail de thèse, cœur du procédé AFYNERIE, était d’étudier les performances de microorganismes anaérobies, sous forme de souches pures ou de consortia pour la valorisation de substrats plus ou moins complexes via un processus de méthanogenèse avortée. Pour cela, il était nécessaire de considérer, déjà à l’échelle du laboratoire, une projection dans le monde industriel. Nous avons alors démontré les capacités de la diversité microbienne à produire des molécules plateformes à partir de coproduits agro-industriels réels en mode stérile puis non stérile. Cette étude s’est appuyée en parallèle sur la caractérisation et la dynamique des populations microbiennes mises en jeu. Ensuite, l’accumulation des métabolites, à la fois inhibiteurs et d’intérêt, dans les milieux fermentaires en mode discontinu et avec des rendements compétitifs, a débouché sur la nécessité de surpasser ces limitations par le passage à un mode continu. Pour ce faire, un procédé d’extraction biocompatible des synthons issus de l’opération de fermentation a été mise en œuvre selon différents mode de réalisations. Ce couplage des opérations unitaires, sous forme de fermentation extractive, a livré des résultats prometteurs tout en étant bâtit dans un cadre de bioraffinerie et d’écologie industrielle qui tend vers le « zéro déchet ». Enfin, à l’inverse des autres technologies émergentes, pour se placer dans une approche de drop-in, la biologie et la chimie ont été associées. Le but a été d’illustrer la multipotence des acides gras volatils (AGVs) en termes d’applications industrielles et de réaliser la preuve de concept de la transformation de la biomasse non alimentaire en biomolécules d’intérêt énergétique et chimique. Ces travaux ont permis de soulever les points clés du changement d’échelle du procédé AFYNERIE et d’entrevoir des perspectives tant fondamentales qu’appliquées. Cette brique technologique, de par sa philosophie multi-intrants/multi-produits, couplant fermentation-extraction-synthèse, permet d’initier la transition au stade pilote d’un procédé innovant compatible avec une future économie biosourcée. / Fossil oil reserves are decreasing, oil prices are fluctuating, and the CO 2 released by oil consumption contributes to global warming. These are driving our society towards increased use of biomass for energy, chemical compounds and other materials. Minimizing waste has been seen as a concern associated with alternative energy efforts. Contrary to expectation, increasing organic waste can be beneficial for alternative energy efforts, because it would result in large amounts of organic resources that can be potential raw materials. Moreover, using waste as a resource for bioenergy production does not compete with human or animal food or agricultural surfaces, and that is one of the greatest challenges facing biotechnology. Using waste as a resource for biomolecule production would thus be an interesting approach to reducing waste in the environment and producing renewable materials. Under specific conditions, detrital biomass can be converted into biomolecules of interest by microorganisms. Anaerobic fermentation techniques represent promising engineering processes for accomplishing the dual goals of waste reduction and renewable biomolecule production for biofuel and green chemistry markets. On the other hand, innovative fermentation processes are necessary for the strong, successful, cost-effective and eco-friendly production of bulk chemicals from renewable resources. In this context, AFYREN company was thought and founded to answer this world challenge through its “all in one” technology, AFYNERIE, which is inspired from the nature and sciences. The first objective of this thesis, heart of the AFYNERIE process, was to study the performances of anaerobic microorganisms, in the form of pure strains or of consortia for the valorization of more or less complex substrata via a process of failed methanogenesis. For that purpose, it was necessary to consider, already at the laboratory scale, a projection in the industrial world. Then, we demonstrated the capacities of the microbial diversity to produce platform molecules from real agro-industrial by-products in sterile and then non sterile mode. This study leaned in parallel on the characterization and the dynamics of involved microbial populations. Then, the accumulation of metabolites, which are at the same time inhibitory and of interest, in fermentative media in batch mode and with competitive yields, resulted in the necessity of surpassing these limitations by the passage in a continuous mode. To do this, a process consisted of a biocompatible extraction of synthons stemming from the operation of fermentation was implemented according to different mode of realizations. This coupling of single operations, in the form of extractive fermentation, delivered promising results while builds in a frame of biorefinery and industrial ecology which tightens towards a “zero waste”. Finally, contrary to the other emergent technologies, to take place in a drop-in approach, biology and chemistry were associated. The purpose was to illustrate the versatility of volatile fatty acids (VFAs) in terms of industrial applications and to realize the proof of concept of the transformation of the non-food biomass in biomolecules of energy and chemical interest. These works allowed to underline key points of the scale-up of AFYNERIE process and to glimpse perspectives fundamental as well as applied perspectives. This technological brick, due to its multi-inputs / multi-products philosophy, coupling fermentation-extraction-synthesis, allows to introduce the transition to the pilot stage of an innovative process compatible with a future biobased economy.
23

The effect of low temperature and transportation time on Clostridium difficile viability

Hörnström, Eva January 2016 (has links)
Anaerobe opportunist Clostridium difficile causes the majority of hospital-acquired antibiotic-associated diarrhea. Infections can be severe because of its ability to withstand many antibiotics, to sporulate and to produce toxins (A, B and binary).     In Sundsvall Hospital C. difficile is detected with real-time PCR, which targets the sequences of toxin B, binary toxin and a regulatory gene deletion seen in the virulent ribotype 027. All positive samples are stored frozen for one month, available for further analysis or outbreak investigation. The aim of this study was to investigate if temperature and transportation time may affect the viability of C. difficile, and the PCR-result.     Frozen feces samples were cultivated, identified with MALDI-TOF and analyzed with real-time PCR after at least one month of storage. To simulate the effect of transportation time, samples were stored at 4-8°C for three and seven days before cultivation and identification. Controls were cultivated after freezing for comparison.     Ninety percent of the frozen samples contained viable C. difficile. Discrepancies between PCR-results were found for two of the oldest samples collected (six months), which turned negative. Fresh samples showed lower amount of viable C. difficile after three days (50 %) than after seven days (60 %) of storage, perhaps because of competition with other bacteria and sporulation. The frozen control group contained a higher viable amount, 75 %. The results indicate that C. difficile tolerates to be stored at low temperatures as practiced today at the laboratory. Transportation time seem to affect the outcome of cultivation, but not the PCR-result.
24

Aerobe Reinigung und anaerobe Entfärbung von Abwässern der Textilveredlungsindustrie

Ohmann, Ulf 26 January 2006 (has links)
Die vorliegende Arbeit befaßt sich mit der anaeroben Entfärbung und aeroben Reinigung von Textilabwasser durch biologische Verfahren. Dazu wurde über mehrere Jahre eine Versuchskläranlage im Pilotmaßstab betrieben und die dabei gewonnenen Erkenntnisse in einer Betriebskläranlage umgesetzt. Die Pilotanlage bestand aus einer anaeroben Vorlage und einem Reaktor, der nach dem SBR-Verfahren (sequentielles biologisches Reinigungsverfahren) betrieben wurde. Das Reaktorvolumen beider Behälter betrug 1 m³. Mit dieser Anlage wurden in der Anaerobstufe farbige Abwässer und gezielt verschiedene Farbmittel entfärbt und in der anschließenden aeroben Belebung die organischen Belastungen und andere Verschmutzungen bis auf die vom Gesetzgeber geforderten Grenzwerte reduziert. Die Versuche ergaben, daß es unter anaeroben Bedingungen möglich ist, auch aerob nicht eliminierbare Färbemittel abzubauen und damit das Gesamtabwasser zu entfärben. Für die Versuche kamen nur „reale“ Abwässer zum Einsatz. Durch die umfangreichen Untersuchungen und Anpassungen an der Versuchskläranlage konnte das Verfahren für die Textilveredlung Erzgebirge technisch so weiterentwickelt werden, daß solide Bemessungsgrundlagen für die großtechnische Realisierung in Form einer Betriebskläranlage vorlagen. Das Reaktorvolumen der beiden parallel geschalteten SBR-Behälter beträgt jeweils 1200 m³. Neben der umfassenden Darstellung und Auswertung der Forschungsergebnisse und Praxiserfahrungen an der Pilotanlage in zahlreichen Abbildungen und Tabellen ist auch die Dokumentation des mehrjährigen Betriebs der Großanlage Gegenstand dieser Arbeit. Am Gesamtabwasserstrom eines Textilveredlungsbetriebes konnte die Eignung einer Kombination aus anaerober biologischer Entfärbung und aerober biologischer Reinigung nachgewiesen werden.
25

Erschließung von Biogaspotenzialen aus Überschussschlamm mit Hilfe der Kombination aus Desintegration und anaerober Schlammstabilisierung

Barth, Matthias 15 August 2011 (has links)
Auf Grund der Zielstellungen des Klimaschutzes und den Szenarien der Ressourcenverfügbarkeit sowie der Energiekostenentwicklung wird das Energiemanagement bei der Betriebsführung von Abwasser- und Schlammbehandlungsanlagen an Bedeutung gewinnen, wobei die Maßnahmen des Energiemanagements mit den grundlegenden Zielen der Abwasser- und Schlammbehandlung zu vereinen sind. Zentrale Elemente des Energie-managements stellen die Nutzung eines breiten Energiespektrums und der Einsatz energieeffizienter Betriebsführungen, Techniken und Technologien dar. Eine Möglichkeit betriebstechnischer Optimierungen besteht in der Anwendung der Verfahrenskombination aus Desintegration und anaerober Schlammstabilisierung. Seit 10 – 15 Jahren wurde intensiv auf dem Gebiet der Klärschlammdesintegration geforscht, ohne dass allgemeingültige Aussagen über die Möglichkeiten der Desintegration ermittelt wurden. Anlässlich der dargestellten Sachlage und eigener Forschungsarbeiten auf dem Gebiet der Klärschlammdesintegration entstand die Idee zur vorliegenden Arbeit. Die Arbeit gibt in einer Literaturrecherche einen umfangreichen Überblick vorhandener Untersuchungen zur Verfahrenskombination Klärschlammdesintegration und anaerobe mesophile Schlammstabilisierung. Zu den untersuchten Desintegrationsapparaten und techniken gehören Rührwerkskugelmühle, Ultraschallhomogenisator, Hochdruck-homogenisator, Lysatzentrifuge, thermische Vorbehandlung, Hochleistungspulstechnik, Ozonbehandlung und die Kombination von thermischer Vorbehandlung mit Säuren- bzw. Laugenaufschluss. Zur Verbesserung der für die Auswertungen benötigten Datenbasis wurden labortechnische Untersuchungen zur anaerob mesophilen bzw. zur anaerob thermophilen Überschussschlammstabilisierung sowie zur Verfahrenskombination von Überschussschlammdesintegration mit anaerob mesophiler bzw. anaerob thermophiler Schlammstabilisierung durchgeführt Zur Desintegration wurden eine Rührwerkskugelmühle PE 075 (Fa. Netzsch-Feinmahltechnik), eine Fliehkraftkugelmühle S 100 (Retsch GmbH), ein Ultraschallhomogenisator UP 400S (Fa. Dr. Hielscher GmbH) eingesetzt sowie ein thermischer Aufschluss bei 75 °C und eine Kombination von thermischem Aufschluss bei 75 °C mit anschließender Unterdruckentspannung durchgeführt. Die vorliegende Arbeit beinhaltet eine umfangreiche Bewertung der Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob mesophiler Schlammstabilisierung. Speziell wurden in diesem Zusammenhang gezielte Untersuchungen zu variierenden Klärschlammqualitäten, Milieubedingungen der anaeroben Stabilisierung (Verweilzeit, Temperatur) und Desintegrationsverfahren (mechanisch, niederthermisch) durchgeführt. Die Auswertungen zeigen, dass die Wirkung dieser Verfahrenskombination maßgeblich durch die anaerobe Abbaubarkeit der Referenzüberschussschlämme bestimmt wird, wobei sich der relative Einfluss der Desintegration mit steigendem Stabilisierungsgrad der Überschussschlämme erhöht. Als Grenze des organischen Abbauverhaltens von desintegrierten Überschussschlämmen kann von einem GV Abbau 59 % bzw. von einem zufuhrspezifischen Biogasanfall von 467 Nl/kg GVZu ausgegangen werden. Die aus der Desintegration resultierende Steigerung des anaeroben Abbauverhaltens von Überschussschlämmen bedingt einen Anstieg der CSBmf- bzw. NH4-N-Prozesswasserbelastung. Für die PO4-P- bzw.- Pges,mf-Anteile des Prozesswassers war kein Zusammenhang nachweisbar. Für die Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob mesophiler Schlammstabilisierung werden neben dem Einsatz zur Verbesserung des anaeroben Abbauverhaltens von Überschussschlämmen Anwendungsmöglichkeiten zur Sanierung überlasteter Faulbehälter bzw. zur Minimierung notwendiger anaerober Reaktionsvolumina aufgezeigt. Entsprechend der Ergebnisse dieser Arbeit ist durch eine vorgeschaltete Überschussschlammdesintegration eine Verkürzung der anaeroben Stabilisierungszeit von 16 – 24 d auf 7 – 12 d möglich, ohne dass eine Verminderung des organischen Abbaus von Überschussschlämmen toleriert werden muss. Gesonderte Auswertungen befassen sich mit der Wirkung der Desintegration auf die anaerobe Abbaubarkeit der im Überschussschlamm enthaltenen Stoffgruppen Fette, Kohlenhydrate und Eiweiße. Es ist festzustellen, dass das anaerob mesophile Abbauverhalten einzelner im Überschussschlamm gebundener Stoffgruppen infolge einer Vorbehandlung durch Desintegrationsverfahren nicht/oder nur unwesentlich verändert wird. Im weiteren Verlauf der Arbeit wurden Nomogramme zur Prognose des Desintegrations-einflusses auf das anaerob mesophile Abbauverhalten von Überschussschlämmen erarbeitet, die es dem planenden Ingenieur bzw. dem Betriebsingenieur gestatten, die Auswirkungen eines Einsatzes der Kombination von Überschussschlammdesintegration und anaerob mesophiler Stabilisierung zu bewerten. Die Darstellungen ermöglichen eine Spezifizierung nach dem Grad der mechanischen Abwasserbehandlung und des in der biologischen Abwasserbehandlung praktizierten Gesamtschlammalters. Die Prognosemöglichkeiten umfassen den für desintegrierte Überschussschlämme bei der anaerob mesophilen Schlamm-stabilisierung auftretenden GV Abbau, den zufuhrspezifischen Biogasanfall sowie die resultierende CSBmf- und NH4-N-Prozesswasserbelastung. In Abhängigkeit der Verfahrens- und Betriebsführung der Abwasserbehandlung führt die Desintegration im Mittel zu einer maximalen absoluten Veränderung des GV-Abbaus bzw. des zufuhrspezifischen Biogas¬anfalls von Überschussschlämmen von 13 % bzw. 90 l/kg GVZu. Die Spannweiten der CSBmf- bzw. NH4-N-Prozesswasserbelastung betragen 0,5 – 6,5 % bzw. 3,0 – 18,0 % der Frachten des Kläranlagenzulaufes. Die vorliegende Arbeit enthält erstmals Ergebnisse zur Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob thermophiler Schlammstabilisierung. Gemäß den Versuchsauswertungen werden das anaerobe Abbauverhalten von Überschussschlämmen unter thermophilen Milieubedingungen und die daraus resultierenden Prozess-wasserbelastungen durch eine vorgeschaltete Überschussschlammdesintegration nur unwesentlich beeinflusst. Abschließend ordnet die Arbeit das Leistungsvermögen der Verfahrenskombination Über-schussschlammdesintegration + anaerob mesophile Schlammstabilisierung gegenüber anderen Optimierungsmöglichkeiten der anaeroben Schlammstabilisierung ein. Die Untersuchungen zeigen, dass durch einen Wechsel des Temperaturniveaus der anaeroben Schlammstabilisierung vom mesophilen in den thermophilen Bereich der unter mesophilen Bedingungen erreichbare GV Abbau bzw. zufuhrspezifische Biogasanfall unbehandelter Überschussschlämme ähnlich beeinflusst werden kann, wie es durch die Kombination von Überschussschlammdesintegration und anschließender anaerober mesophiler Schlammstabilisierung möglich ist. Gleichzeitig ist bei der anaerob thermophilen Stabilisierung unbehandelter Überschussschlämme gegenüber der anaerob mesophilen Stabilisierung desintegrierter Überschussschlämme eine höhere Prozesswasserbelastung zu erwarten.
26

Untersuchungen zum biologischen Aufschluss faserreicher pflanzlicher Rohstoffe im Kontext der Biogasbildung

Harsányi, Judit 29 August 2023 (has links)
Der biologische Aufschluss lignocellulosehaltiger Biomasse mit Hilfe von Mikroorganismen oder ihrer Enzyme ist im Vergleich zu bekannten physikochemischen Verfahren umwelt- und ressourcenschonend. Der Einsatz geeigneter bakterieller oder pilzlicher Hydrolasen und Oxidoreduktasen in isolierten Form bedarf jedoch, aufgrund der noch zu geringen katalytischen Effizienzen und der nach wie vor zu hohen Herstellungskosten der Enzyme, weiterer Optimierung. Vor diesem Hinter-grund besteht, neben dem Ansatz einer gentechnischen Verbesserung der En-zym-Eigenschaften mittels protein oder metabolic engineering, die Möglichkeit einer prozesstechnischen Optimierung der Enzym-Präparate und ihrer Einsatzbe-dingungen. Dem letzteren Ansatz widmete sich die vorliegende Arbeit, in der ein bisher kommerziell nicht erhältliches Glycosidase-Gemisch aus dem ascomycetalen Schimmelpilz Penicillium janthinellum, der für seine hohen β-Glycosidase-Aktivitäten bekannt ist, im Zusammenhang mit dem enzymatischen Aufschluss faserreicher Substrate (Lignocellulosen) untersucht wurde. Ein Schwerpunkt lag dabei auf der kombinierten Anwendung des Glycosidase-Präparats mit zwei pilzlichen Peroxidasen (Mangan-Peroxidase, MnP und Dye-decolorizing-Peroxidase, DyP). Darüber hinaus wurden vergleichende Untersuchungen zu biologischen Aufschlussverfahren unter Einsatz pilzlicher Glycosidasen und/oder mikrobieller Vorkulturen durchgeführt. Die untersuchten Lignocellulose-Substrate (Hölzer, strohähnliche Materialien) stammten aus der gemäßigten und tropischen Klimazone (Europa bzw. Kambodscha), und wurden in den Experimenten in zerkleinerter Form, allerdings ohne weitere Vorbehandlung, eingesetzt. Die Konzentration niedermolekularer Zucker (insbesondere Monosaccharide), die während des enzymatischen Aufschlusses aus den Substraten freigesetzt wurden sowie der Biogasertrag, der mittels anaerober Fermentation aus den enzymatisch und/oder mikrobiell vorbehandelten Substraten erzielt wurde, dienten zur Beurteilung der Effektivität der jeweiligen Vorbehandlung. Außerdem wurde die in den Experimenten verwendete mikrobielle Vorkultur soweit molekularbiologisch untersucht, dass die Bakterienart identifiziert werden konnte, die maßgeblich am Aufschluss der lignocellulosehaltigen Biomasse beteiligt war. Die enzymatische Umsetzung der ausgewählten lignocellulosehaltigen Substrate mit Hilfe des Glycosidase-Gemisches aus P. janthinellum verlief erfolgreich und ist vergleichbar mit Ergebnissen, die laut Literatur unter Zuhilfenahme der effektivsten industriellen Cellulase-Präparate erzielt worden sind. Es wurden vorrangig Glucose und Xylose aus den verschiedenen Zellwand-Polysacchariden freigesetzt, wobei die Umsetzung von Cellulose und Hemicellulosen im Holz tropischer Laubbäume effizienter verlief als im Holz europäischer Laubbäume. Der Gehalt an Lignin und organischen Extraktiven beeinflusste – abgesehen von einigen artenspezifischen Inhibitoren – nur geringfügig den enzymatischen Aufschluss der Polysaccharid-Komponenten. Die Vorbehandlung mit dem Glycosidase-Präparat aus P. janthinellum führte zu einer Verbesserung der Biogasbildung und zum Ausbleiben der für faserreiche Substrate typischen Lag-Phase während der ers-ten Tage der anaeroben Vergärung der Lignocellulose aus Triticum sp. (Weizen-stroh) und Pinus sylvestris (Kiefernspäne). Dabei erhöhte sich der finale Biogasertrag innerhalb des Untersuchungszeitraums signifikant. Die genannten positiven Effekte einer enzymatischen Vorbehandlung könnten sich in kontinuierlich betriebenen großtechnischen Biogasanlagen als nützlich erweisen: Zum einen ließen sich die Gaserträge deutlich erhöhen und zum anderen könnte die erforderliche Verweilzeit des Substrates im Bioreaktor (Fermenter, Faulturm) und somit das benötigte Anlagenvolumen reduziert werden. Eine vorausgehende Oxidation des im Substrat enthaltenen Lignins mit Hilfe der MnP erwies sich in der nachfolgenden Behandlung mit Glycosidasen als förderlich hinsichtlich der Freisetzung von Zuckern aus dem Holz von Fagus sylvatica (Rotbuche). Verglichen mit der häufig verwendeten Malonsäure war die Citronensäure, ein pilzlicher Metabolit des Intermediär-Stoffwechsels (Zitronensäurezyklus), ein wirksamerer Mangan-Chelator für diese Voroxidation mittels MnP. Dies hing möglicherweise mit der höheren chemischen Reaktivität der Citronensäure zu-sammen, was eine verstärkte Bildung chemischer Radikale zur Folge hatte. Eine enzymatische Vorbehandlung mittels DyP und dem Glycosidase-Gemisch in einer Reaktionskaskade wirkte sich ebenfalls positiv auf die Biogasbildung, in diesem Fall aus Bagasse von Saccharum officinarum (Zuckerrohr), aus. Dabei kam es wahrscheinlich auch zu einer partiellen Oxidation und Zerstörung des Lignins und damit zu einer Verbesserung der Zugänglichkeit der Zellwand-Polysaccharide. Im Ergebnis konnten Cellulose und Hemicellulosen in späteren Phasen der anaeroben Vergärung von den entsprechenden Mikroorganismen (Bakterien, Archaeen) besser verwertet werden. Der Voraufschluss mit Glycosidasen führte hingegen in der initialen Phase der anaeroben Vergärung zu positiven Effekten bezüglich der Biogasbildung, indem die bereitgestellten Einfachzucker (z.B. Glucose, Xylose) rasch in Methan umgewandelt wurden. Beim Vergleich verschiedener biologischer Aufschlussverfahren erwies sich eine kombinierte Vorbehandlung des Substrates („Stroh“ von Miscanthus × giganteus), bestehend aus einer Vorhydrolyse durch das Glycosidase-Gemisch und einer Vorfermentation mit einer Mischkultur gärender Mikroorganismen, als der effektivste Weg. Durch die kombinierte biologische Vorbehandlung konnte ein ähnlich hoher Methanertrag wie für Maissilage (das derzeit optimale Substrat in Biogasanlagen) erreicht werden. In der entsprechenden mikrobiellen Vorkultur wurde ein Bacillus-Vertreter aus dem so genannten Bacillus-subtilis-Artkomplex (Bacillus subtilis species-complex) mittels klassischer mikrobiologischer und molekularbiologischer Analysen als möglicher „abbaurelevanter Organismus“ identifiziert. / The biological disintegration of lignocellulosic biomass by microorganisms and their enzymes is – in comparison to established physical and chemical approaches –environmentally friendly and sustainable. The broad use of isolated bacterial or fungal hydrolases and oxidoreductases requires, however, still substantial optimization because of too low catalytic performance and too high production costs for the enzymes. Against this background, there is the possibility, besides genetic improvement of enzyme properties by protein and metabolic engineering, to optimize the process performance of enzymes as well as the reaction conditions. The latter approach has been subject of the present dissertation, in the course of which a non-commercial preparation of glycosidases from the ascomycetous mold Penicillium janthinellum, which is well-known for its high β-glycosidase activities, was used for the enzymatic disintegration of fiber-rich substrates (lignocelluloses). Experimental work focused on the combined action of the glycosidase mixture with two fungal peroxidases (manganese peroxidase, MnP and dye-decolorizing peroxidase, DyP). Furthermore, comparing studies were carried out regarding enzymatic/biological lignocellulose disintegration by isolated fungal glycosidases and/or microbial precultures. Lignocellulose substrates studied (wood, straw-like materials) originated from temperate and tropic climate zones (Europe and Cambodia, respectively) and were used after chopping in all experiments without further pretreatment. The concentration of low-molecular mass sugars (in first place monosaccharides), which were being released from the substrates during enzyme action as well as the biogas yield that was achieved via fermentation of enzymatically or microbiologically pretreated samples, were taken into consideration to evaluate the efficacy of respective treatments. Moreover, the microbial preculture used in the above experiments was analyzed on the molecular level to an extent that it was possible to identify a bacterial key species that was involved in the degradation of lignocellulosic biomass. The enzymatic treatment of selected lignocellulosic substrates with the glycosidase mixture of P. janthinellum was successful and the results are – according to literature data – comparable to results reported for the best industrial cellulase preparations. In first place, glucose und xylose were released from different cell-wall polysaccharides, and the conversion of cellulose und hemicelluloses in the wood of tropical broad-leaved trees was more efficient than in wood of respective European trees. The content of lignin and organic extractives only slightly affected the enzymatic disintegration of polysaccharide components (apart from a few species-specific inhibitors). Substrate pretreatment with the glycosidase preparation of P. janthinellum resulted in an enhancement of biogas formation and in the disappearance of the lag-phase being characteristic for the conversion of fiber-rich substrates during the first days of anaerobic treatment of lignocelluloses from Triticum sp. (wheat straw) und Pinus sylvestris (wood shavings). In this context, the final biogas yields significantly increased in the course of the experiments. The observed positive effects of enzymatic pretreatment may be beneficially ap-plied in continuously working biogas plants. That way, on one hand, the gas yields could be considerably enhanced and on the other hand, the required retention time of the substrates in the bioreactor (fermenter, digestion tower) and hence the required reactor volume could be reduced. The preceding oxidation of substrate-bound lignin with MnP turned out to be beneficial for the subsequent glycosidase treatment with respect to the release of sugars from beech wood (Fagus sylvatica). In comparison to widely used malonic acid, citric acid – a ubiquitous fungal metabolite of the intermediary metabolism (tricarboxylic acid cycle) –proved to be the more effective manganese chelator for the pre-oxidation of lignin by MnP. Probably this corresponds to the higher chemical reactivity of citric acid, which entails a forced formation of chemical radicals. Enzymatic substrate pretreatment with DyP and the glycosidase mixture within a reaction cascade had also a positive effect on the formation of biogas, in this case, from bagasse of Saccharum officinarum (sugar cane). During the respective treatment, the lignin might partially be oxidized as well and thereby, the availability of cell-wall polysaccharides was improved for hydrolase action. As the result, microorganisms (bacteria, archaea) consumed cellulose and hemicelluloses more efficiently during later phases of anaerobic fermentation. On the other hand, glycosidase pretreatments had positive effects in the initial phase of fermentation, regarding biogas formation from the ‘made-available’ monosaccharides (e.g. glucose, xylose) that were immediately converted into methane. When comparing different biological methods to disintegrate lignocellulose, pre-hydrolysis with a glycosidase mixture combined with fermentative pretreatment proved to be the most effective option (demonstrated by the example of ‘straw’ from Miscanthus × giganteus). That way, a similarly high methane yield could be achieved as with maize silage (for the time being, the most suitable substrate used in biogas facilities). In the respective microbial preculture, a Bacillus species from the Bacillus subtilis species-complex was identified as a relevant potential degrader microbe by classic microbiological and molecular analyses.
27

The Interactions of Clostridium Perfringens With Phagocytic Cells

O'Brien, David Kenneth 24 April 2003 (has links)
Clostridium perfringens is the most common cause of gas gangrene (clostridial myonecrosis), a disease that begins when ischemic tissues become contaminated with C. perfringens. C. perfringens quickly multiplies in ischemic tissues and spreads to healthy areas, leading to high levels of morbidity and mortality. As a species, the bacterium can synthesize thirteen different toxins. The alpha toxin (PLC) and perfringolysin O (PFO) are thought to be important virulence factors in gangrene. We wished to understand how C. perfringens is capable of avoiding killing by the host immune system, and determine if PLC and PFO play a role in this avoidance. We found C. perfringens was not killed by J774-33 cells or mouse peritoneal macrophages under aerobic or anaerobic conditions. Using electron microscopy, we showed that C. perfringens could escape the phagosome of J774-33 and mouse peritoneal macrophages. We believe the ability of C. perfringens to survive in the presence of macrophages is due to its ability to escape the phagosome. Using a variety of inhibitors of specific receptors, we identified those used by J774-33 cells to phagocytose C. perfringens. The scavenger receptor, mannose receptor(s), and complement receptor (CR3) were involved in the phagocytosis of C. perfringens. To determine if PFO or PLC were involved in the ability of C. perfringens to survive in the presence of macrophages, we constructed C. perfringens strains lacking these toxins. The ability of C. perfringens to survive in the presence of J774-33 cells is dependent on PFO, while survival in mouse peritoneal macrophages is dependent on PFO and PLC. The ability of C. perfringens to escape the phagosome of J774-33 cells and mouse peritoneal macrophages is mediated by either PFO or PLC. Using a mouse model, we found that PFO and PLC were necessary for C. perfringens to survive in vivo using infectious doses 1000 times lower than those required to initiate a gangrene infection. We propose that PFO and PLC play a critical role in the survival of C. perfringens during the early stages of gangrene infections, when phagocytic cells are present and bacterial numbers are low. / Ph. D.
28

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
29

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
30

Erschließung von Biogaspotenzialen aus Überschussschlamm mit Hilfe der Kombination aus Desintegration und anaerober Schlammstabilisierung

Barth, Matthias 25 June 2012 (has links) (PDF)
Auf Grund der Zielstellungen des Klimaschutzes und den Szenarien der Ressourcenverfügbarkeit sowie der Energiekostenentwicklung wird das Energiemanagement bei der Betriebsführung von Abwasser- und Schlammbehandlungsanlagen an Bedeutung gewinnen, wobei die Maßnahmen des Energiemanagements mit den grundlegenden Zielen der Abwasser- und Schlammbehandlung zu vereinen sind. Zentrale Elemente des Energie-managements stellen die Nutzung eines breiten Energiespektrums und der Einsatz energieeffizienter Betriebsführungen, Techniken und Technologien dar. Eine Möglichkeit betriebstechnischer Optimierungen besteht in der Anwendung der Verfahrenskombination aus Desintegration und anaerober Schlammstabilisierung. Seit 10 – 15 Jahren wurde intensiv auf dem Gebiet der Klärschlammdesintegration geforscht, ohne dass allgemeingültige Aussagen über die Möglichkeiten der Desintegration ermittelt wurden. Anlässlich der dargestellten Sachlage und eigener Forschungsarbeiten auf dem Gebiet der Klärschlammdesintegration entstand die Idee zur vorliegenden Arbeit. Die Arbeit gibt in einer Literaturrecherche einen umfangreichen Überblick vorhandener Untersuchungen zur Verfahrenskombination Klärschlammdesintegration und anaerobe mesophile Schlammstabilisierung. Zu den untersuchten Desintegrationsapparaten und techniken gehören Rührwerkskugelmühle, Ultraschallhomogenisator, Hochdruck-homogenisator, Lysatzentrifuge, thermische Vorbehandlung, Hochleistungspulstechnik, Ozonbehandlung und die Kombination von thermischer Vorbehandlung mit Säuren- bzw. Laugenaufschluss. Zur Verbesserung der für die Auswertungen benötigten Datenbasis wurden labortechnische Untersuchungen zur anaerob mesophilen bzw. zur anaerob thermophilen Überschussschlammstabilisierung sowie zur Verfahrenskombination von Überschussschlammdesintegration mit anaerob mesophiler bzw. anaerob thermophiler Schlammstabilisierung durchgeführt Zur Desintegration wurden eine Rührwerkskugelmühle PE 075 (Fa. Netzsch-Feinmahltechnik), eine Fliehkraftkugelmühle S 100 (Retsch GmbH), ein Ultraschallhomogenisator UP 400S (Fa. Dr. Hielscher GmbH) eingesetzt sowie ein thermischer Aufschluss bei 75 °C und eine Kombination von thermischem Aufschluss bei 75 °C mit anschließender Unterdruckentspannung durchgeführt. Die vorliegende Arbeit beinhaltet eine umfangreiche Bewertung der Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob mesophiler Schlammstabilisierung. Speziell wurden in diesem Zusammenhang gezielte Untersuchungen zu variierenden Klärschlammqualitäten, Milieubedingungen der anaeroben Stabilisierung (Verweilzeit, Temperatur) und Desintegrationsverfahren (mechanisch, niederthermisch) durchgeführt. Die Auswertungen zeigen, dass die Wirkung dieser Verfahrenskombination maßgeblich durch die anaerobe Abbaubarkeit der Referenzüberschussschlämme bestimmt wird, wobei sich der relative Einfluss der Desintegration mit steigendem Stabilisierungsgrad der Überschussschlämme erhöht. Als Grenze des organischen Abbauverhaltens von desintegrierten Überschussschlämmen kann von einem GV Abbau 59 % bzw. von einem zufuhrspezifischen Biogasanfall von 467 Nl/kg GVZu ausgegangen werden. Die aus der Desintegration resultierende Steigerung des anaeroben Abbauverhaltens von Überschussschlämmen bedingt einen Anstieg der CSBmf- bzw. NH4-N-Prozesswasserbelastung. Für die PO4-P- bzw.- Pges,mf-Anteile des Prozesswassers war kein Zusammenhang nachweisbar. Für die Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob mesophiler Schlammstabilisierung werden neben dem Einsatz zur Verbesserung des anaeroben Abbauverhaltens von Überschussschlämmen Anwendungsmöglichkeiten zur Sanierung überlasteter Faulbehälter bzw. zur Minimierung notwendiger anaerober Reaktionsvolumina aufgezeigt. Entsprechend der Ergebnisse dieser Arbeit ist durch eine vorgeschaltete Überschussschlammdesintegration eine Verkürzung der anaeroben Stabilisierungszeit von 16 – 24 d auf 7 – 12 d möglich, ohne dass eine Verminderung des organischen Abbaus von Überschussschlämmen toleriert werden muss. Gesonderte Auswertungen befassen sich mit der Wirkung der Desintegration auf die anaerobe Abbaubarkeit der im Überschussschlamm enthaltenen Stoffgruppen Fette, Kohlenhydrate und Eiweiße. Es ist festzustellen, dass das anaerob mesophile Abbauverhalten einzelner im Überschussschlamm gebundener Stoffgruppen infolge einer Vorbehandlung durch Desintegrationsverfahren nicht/oder nur unwesentlich verändert wird. Im weiteren Verlauf der Arbeit wurden Nomogramme zur Prognose des Desintegrations-einflusses auf das anaerob mesophile Abbauverhalten von Überschussschlämmen erarbeitet, die es dem planenden Ingenieur bzw. dem Betriebsingenieur gestatten, die Auswirkungen eines Einsatzes der Kombination von Überschussschlammdesintegration und anaerob mesophiler Stabilisierung zu bewerten. Die Darstellungen ermöglichen eine Spezifizierung nach dem Grad der mechanischen Abwasserbehandlung und des in der biologischen Abwasserbehandlung praktizierten Gesamtschlammalters. Die Prognosemöglichkeiten umfassen den für desintegrierte Überschussschlämme bei der anaerob mesophilen Schlamm-stabilisierung auftretenden GV Abbau, den zufuhrspezifischen Biogasanfall sowie die resultierende CSBmf- und NH4-N-Prozesswasserbelastung. In Abhängigkeit der Verfahrens- und Betriebsführung der Abwasserbehandlung führt die Desintegration im Mittel zu einer maximalen absoluten Veränderung des GV-Abbaus bzw. des zufuhrspezifischen Biogas¬anfalls von Überschussschlämmen von 13 % bzw. 90 l/kg GVZu. Die Spannweiten der CSBmf- bzw. NH4-N-Prozesswasserbelastung betragen 0,5 – 6,5 % bzw. 3,0 – 18,0 % der Frachten des Kläranlagenzulaufes. Die vorliegende Arbeit enthält erstmals Ergebnisse zur Verfahrenskombination Überschussschlammdesintegration mit anschließender anaerob thermophiler Schlammstabilisierung. Gemäß den Versuchsauswertungen werden das anaerobe Abbauverhalten von Überschussschlämmen unter thermophilen Milieubedingungen und die daraus resultierenden Prozess-wasserbelastungen durch eine vorgeschaltete Überschussschlammdesintegration nur unwesentlich beeinflusst. Abschließend ordnet die Arbeit das Leistungsvermögen der Verfahrenskombination Über-schussschlammdesintegration + anaerob mesophile Schlammstabilisierung gegenüber anderen Optimierungsmöglichkeiten der anaeroben Schlammstabilisierung ein. Die Untersuchungen zeigen, dass durch einen Wechsel des Temperaturniveaus der anaeroben Schlammstabilisierung vom mesophilen in den thermophilen Bereich der unter mesophilen Bedingungen erreichbare GV Abbau bzw. zufuhrspezifische Biogasanfall unbehandelter Überschussschlämme ähnlich beeinflusst werden kann, wie es durch die Kombination von Überschussschlammdesintegration und anschließender anaerober mesophiler Schlammstabilisierung möglich ist. Gleichzeitig ist bei der anaerob thermophilen Stabilisierung unbehandelter Überschussschlämme gegenüber der anaerob mesophilen Stabilisierung desintegrierter Überschussschlämme eine höhere Prozesswasserbelastung zu erwarten.

Page generated in 0.0349 seconds