• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 143
  • 45
  • 25
  • 12
  • 8
  • 8
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 590
  • 590
  • 177
  • 143
  • 116
  • 115
  • 113
  • 92
  • 89
  • 82
  • 77
  • 70
  • 68
  • 60
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

Lv, Wen 23 August 2013 (has links)
No description available.
402

Electrochemical activity and stability of Geobacter spp. dominated biofilm anodes in anaerobic digestion

Dzofou Ngoumelah, Daniel 19 May 2023 (has links)
Anaerobic digestion (AD) is a widespread technology for treating waste streams such as livestock manure. During AD, biogas is produced and subsequently used as renewable energy for certain purposes, such as injection into the natural gas grid or as fuel for transportation. Despite its many advantages, AD can be limited by various factors, including process instability against volatile fatty acids (VFA), nitrogen overloads, or the presence of inhibitors, as well as the need for biogas post-processing to increase its methane content. Therefore, strategies are needed to monitor the AD process, control the effluent quality and upgrade the biogas recovered. Microbial electrochemical technologies (MET) have the potential to optimize AD. MET are systems in which oxidation and/or reduction reactions are catalyzed by electroactive microorganisms (EAM) on the surface of an electrode. Typically, EAM used in AD-MET combinations are dominated by Geobacter spp., that form multilayer biofilms on electrodes (e.g., anodes) used as solid terminal electron acceptors. However, using Geobacter spp. dominated biofilm anodes in AD-MET combinations has so far encountered several hurdles, ranging from biofilm dispersal to inhibition of biofilm performance. Thus, the intention of the present thesis was to identify and to address the different inhibition processes of Geobacter spp. dominated biofilm anodes in AD-MET combinations. Particular attention was devoted to the impact that planktonic methanogens, particles and dissolved components present in AD effluents may have on the activity, stability and microbial community of Geobacter spp. dominated biofilm anodes. This was achieved by investigating the effect of biofilm age, applied anode potentials as well as the role played by specific methanogens with different metabolisms on the activity, stability and microbial community of Geobacter spp. dominated biofilms. The results indicated that older Geobacter spp. dominated biofilm anodes (≥ 5-week-old) are far more active and stable than younger biofilms (≤ 3-week-old) in AD environments. Compared to high applied anode potential (0.4 V vs. Ag/AgCl sat. KCl), low applied anode potentials (-0.2 V to 0.2 V vs. Ag/AgCl sat. KCl) resulted in higher activities of Geobacter spp. dominated biofilm anodes in AD environments. Other results indicated that AD effluents dominated by strict acetoclastic methanogens (e.g., Methanothrix spp.) cause deterioration in biofilm stability and activity, in contrast to AD effluents dominated by hydrogenotrophic methanogens (e.g., Methanobacterium spp.). In conclusion, the thesis provides useful information for understanding and improving the performance of AD-MET combinations and ways to overcome the multiple hurdles encountered so far.:1 Introduction 12 1.1 Basics of microbiology of anaerobic digestion 12 1.1.1 Methanogens and their functionality 12 1.1.2 Anaerobic digestion - methanogens and bacteria 13 1.1.3 Microbial diversity in anaerobic digestion: focus on methanogens 14 1.1.4 Metabolism and syntrophy in anaerobic digestion 16 1.1.5 Parameters influencing anaerobic digestion 18 1.2 Microbial electrochemical technologies 19 1.2.1 Primary microbial electrochemical technologies - possible applications 19 1.2.2 Basic examples of primary microbial electrochemical technologies 21 1.2.3 Geobacter spp. as model electroactive microorganism in microbial electrochemical technologies 23 1.2.4 Modes of electron transfer between electroactive microorganisms and electrodes 24 1.2.5 Electrochemical characterization of biofilm anodes 27 1.3 Combination of anaerobic digestion and microbial electrochemical technologies 28 1.3.1 Benefits: biotechnological applications 28 1.3.2 Challenges: factors limiting the combination anaerobic digestion - microbial electrochemical technologies 29 1.4 Aims and thesis outline 30 2 Publication 1: Benefits of Age – Improved Resistance of Mature Electroactive Biofilm Anodes in Anaerobic Digestion 33 2.1 Supplementary information for “Benefits of Age – Improved Resistance of Mature Electroactive Biofilm Anodes in Anaerobic Digestion” 43 3 Publication 2: Combining Geobacter spp. dominated biofilms and anaerobic digestion effluents - the effect of effluent composition and electrode potential on biofilm activity and stability 55 3.1 Supplementary information for “Combining Geobacter spp. dominated biofilms and anaerobic digestion effluents - the effect of effluent composition and electrode potential on biofilm activity and stability” 67 4 Publication 3: A unified and simple medium for growing model methanogens 91 4.1 Supplementary information for “A unified and simple medium for growing model methanogens” 105 5 Publication 4: Effect of model methanogens on the activity, stability, and microbial community structure of Geobacter spp. dominated biofilm anodes 117 5.1 Supplementary information for “Effect of model methanogens on the activity, stability, and microbial community structure of Geobacter spp. dominated biofilm anodes” 153 6 Discussion 167 6.1 The older the biofilm, the higher its activity and resistance when combined with anaerobic digestion effluents 167 6.2 Low applied anode potential leads to high activity of Geobacter spp. dominated biofilm in anaerobic digestion environments. 168 6.3 The role of methanogens, abiotic particles, dissolved components in the combination anaerobic digestion – microbial electrochemical technologies 170 6.3.1 Abiotic particles, dissolved components present in anaerobic digestion effluents do not always interfere with the activity, stability and community of Geobacter spp. dominated biofilm anodes 170 6.3.2 The activity and community of Geobacter spp. dominated biofilm anodes in anaerobic digestion environments vary with the predominant group of methanogens 171 7 Conclusions and future prospects 173 8 References 176 9 Appendix 187 9.1 Author contribution statements of published articles 187 9.2 Curriculum vitae 193 9.3 List of publications and conference contributions 196 9.4 Acknowledgment 199 9.5 Declaration of authorship 201
403

[en] ORGANIC SOLID WASTE TREATMENT: ANAEROBIC DIGESTION ANALYSIS OF THE POTENTIAL BIOGAS YIELD FROM TANGERINE PEEL / [pt] TRATAMENTO DE RESÍDUOS SÓLIDOS ORGÂNICOS: ANÁLISE DO POTENCIAL DE GERAÇÃO DE BIOGÁS PROVENIENTE DA DIGESTÃO ANAERÓBIA DA CASCA DE TANGERINA

RAFAEL VIEIRA DE CARVALHO 30 December 2020 (has links)
[pt] Em um cenário onde a geração de resíduos ao redor do mundo cresce cada vez mais, técnicas de tratamento de resíduos são fundamentais para garantir menores emissões de gases de efeito estufa ao meio ambiente. Esta pesquisa apresenta uma análise realizada com cascas de dois tipos distintos de tangerina, com a finalidade de estudar o potencial de geração de biogás das mesmas através da realização de um ensaio BMP (Biochemical Methane Potential). A digestão anaeróbia de resíduos orgânicos corresponde a um tratamento biológico que apresenta uma solução com produtos valiosos, como o biogás, no combate ao aumento de emissões poluidoras, já que o mesmo pode ser utilizado como energia térmica, elétrica ou combustível em detrimento aos combustíveis fósseis. Dessa forma, esta pesquisa também realiza um estudo acerca do processo de fabricação de sucos naturais por parte de pequenos e grandes produtores e de como os mesmos podem utilizar as cascas dos restos da produção dos sucos para a geração de biogás como fonte de energia limpa. Os resultados encontrados apresentam para a casca da tangerina Ponkan um potencial de geração de biogás de 615,38 NmL/gSV e, para a casca da tangerina Montenegrina, o valor encontrado foi de 565,84 NmL/gSV. Os resultados obtidos sugerem um potencial de geração de biogás positivo para o substrato analisado, a tangerina, quando comparados aos demais resultados de outras frutas encontradas na literatura. / [en] The constant increase in global warming that occurred after the middle of the twentieth century and intensified by anthropogenic actions based on the emission of greenhouse gases such as methane, is a reality that worries not only for the harmful damages to the environment and the quality of life of human beings, but also for the preservation of future generations (Silva and Paula, 2009). In the mid-1980s, with the Brundtland conference, the concept for sustainable development emerged which is defined as meeting the needs of the present without compromising future generations (BRUNDLAND, 1987). In order to avoid excessive damage to the existence of human beings, recent studies by the Intergovernmental Panel on Climate Change (IPCC, 2018) examined the need to limit global warming to 1.5 Celsius instead of 2 Celsius, as previously predicted by the Paris Climate Agreement signed in 2015. According to the study, the absence of measures to be taken at present may generate extremely harmful damage to the environment, human beings, fauna, and flora of the planet. Limiting global warming to 1.5 Celsius involves large reductions in the emission of methane (CH4) and carbon dioxide (CO2). Thus, a strong demand in the bioenergy sector is necessary, highlighting the importance of using appropriate management measures which contribute to minimizing the problem, as is the case with the use of anaerobic digestion as a treatment for organic solid waste. The growing increase in the world population and the accelerated urbanization process of cities have resulted in the generation of excessive amounts of solid urban waste (Roth & Garcias, 2008), which, if poorly managed, contribute not only to the increase in damage caused to environment, but also inflict several problems in the social and economic aspect of modern society, thus aggravating the problem.
404

Anaerobic Digestion of Wastewater-Grown Algae Biomass with Optimized Biogas Yields and Nutrient Solubilzation

Racz, Tiffany A 01 June 2018 (has links) (PDF)
Whole-cell algae biomass grown on nutrient-rich wastewater can be anaerobically digested to produce renewable heat and power, and to solubilize nutrients to grow additional algae biomass in a biorefinery system. In this study, algae biomass was grown on clarified primary wastewater in 33-m2 ponds at a 4-day residence time with sedimentation harvesting of the biomass. Lab digesters were used to test biogas yields and nutrient solubilization from the anaerobic digestion of algal biomass with and without mixing and with sonication as a pretreatment. Additionally, algae were fed to unheated and unmixed 1135-L pilot digesters to determine the effects of seasonal temperatures and organic loading rates on biogas yields and nutrient solubilization. Finally a scalability experiment was conducted to determine how well lab digesters replicated the nutrient solubilization and biogas yields of pilot digesters when they were operated at the same average daily temperature, and organic load. Overall, the tested conditions included mixing, temperature, feed pretreatment by sonication, scale, and organic loading. It was determined that unmixed, 20˚C digesters fed an average variable organic loading of 0.12 g VS/L-day had the highest yield of 0.3 L CH4/g VS fed. Compared to similarly operated digesters (30˚C, constant organic load 0.25 g VS/L-day) sonicated feed increased the mass yield of methane by 18% (0.28 L CH4/g VSintroduced), and mixing increased the mass yield of methane by 4% (0.25 L CH4/g VS). For the same digesters, sonicated feed increased the average nitrogen and phosphorus solubilization 10% and 11% with 36% N and 28% particulate P remaining, respectively. Eliminating mixing increased the average nitrogen and phosphorus solubilization by 13% and 27%, with 40% and 31% remaining as particulates, respectively. The pilot digesters produced an overall average mass yield of 0.19 L CH4/g VS, with a summer average of 0.46 L CH4/g VS and a winter average of 0.15 L CH4/g VS. For the pilot digesters, the average amount of remaining particulate nitrogen and phosphorus was 36% and 39%, respectively, with an average of 57% volatile solids destruction. Finally for the scale experiment, the pilot digesters exhibited mass and volumetric yields of 47% and 28% (0.19 L CH4/g VS; 0.011 L CH4/L-d) greater than the lab digesters. Additionally, the pilot digesters had 2% greater nitrogen solubilization and 29% less phosphorus solubilization with 23% N and 15% P, than the lab digesters. Based on these results, for a low organic load (0.01 – 0.65 g VS/L-day), it is recommended that digesters be unmixed and heated which, and have a longer winter residence time. In addition to benefiting methane yield and nutrient solubilization, these digester operating conditions would allow increased supply of nutrients to ponds during the most productive months when nutrients are being consumed at faster rates in the algae ponds.
405

Untersuchungen zum biologischen Aufschluss faserreicher pflanzlicher Rohstoffe im Kontext der Biogasbildung

Harsányi, Judit 29 August 2023 (has links)
Der biologische Aufschluss lignocellulosehaltiger Biomasse mit Hilfe von Mikroorganismen oder ihrer Enzyme ist im Vergleich zu bekannten physikochemischen Verfahren umwelt- und ressourcenschonend. Der Einsatz geeigneter bakterieller oder pilzlicher Hydrolasen und Oxidoreduktasen in isolierten Form bedarf jedoch, aufgrund der noch zu geringen katalytischen Effizienzen und der nach wie vor zu hohen Herstellungskosten der Enzyme, weiterer Optimierung. Vor diesem Hinter-grund besteht, neben dem Ansatz einer gentechnischen Verbesserung der En-zym-Eigenschaften mittels protein oder metabolic engineering, die Möglichkeit einer prozesstechnischen Optimierung der Enzym-Präparate und ihrer Einsatzbe-dingungen. Dem letzteren Ansatz widmete sich die vorliegende Arbeit, in der ein bisher kommerziell nicht erhältliches Glycosidase-Gemisch aus dem ascomycetalen Schimmelpilz Penicillium janthinellum, der für seine hohen β-Glycosidase-Aktivitäten bekannt ist, im Zusammenhang mit dem enzymatischen Aufschluss faserreicher Substrate (Lignocellulosen) untersucht wurde. Ein Schwerpunkt lag dabei auf der kombinierten Anwendung des Glycosidase-Präparats mit zwei pilzlichen Peroxidasen (Mangan-Peroxidase, MnP und Dye-decolorizing-Peroxidase, DyP). Darüber hinaus wurden vergleichende Untersuchungen zu biologischen Aufschlussverfahren unter Einsatz pilzlicher Glycosidasen und/oder mikrobieller Vorkulturen durchgeführt. Die untersuchten Lignocellulose-Substrate (Hölzer, strohähnliche Materialien) stammten aus der gemäßigten und tropischen Klimazone (Europa bzw. Kambodscha), und wurden in den Experimenten in zerkleinerter Form, allerdings ohne weitere Vorbehandlung, eingesetzt. Die Konzentration niedermolekularer Zucker (insbesondere Monosaccharide), die während des enzymatischen Aufschlusses aus den Substraten freigesetzt wurden sowie der Biogasertrag, der mittels anaerober Fermentation aus den enzymatisch und/oder mikrobiell vorbehandelten Substraten erzielt wurde, dienten zur Beurteilung der Effektivität der jeweiligen Vorbehandlung. Außerdem wurde die in den Experimenten verwendete mikrobielle Vorkultur soweit molekularbiologisch untersucht, dass die Bakterienart identifiziert werden konnte, die maßgeblich am Aufschluss der lignocellulosehaltigen Biomasse beteiligt war. Die enzymatische Umsetzung der ausgewählten lignocellulosehaltigen Substrate mit Hilfe des Glycosidase-Gemisches aus P. janthinellum verlief erfolgreich und ist vergleichbar mit Ergebnissen, die laut Literatur unter Zuhilfenahme der effektivsten industriellen Cellulase-Präparate erzielt worden sind. Es wurden vorrangig Glucose und Xylose aus den verschiedenen Zellwand-Polysacchariden freigesetzt, wobei die Umsetzung von Cellulose und Hemicellulosen im Holz tropischer Laubbäume effizienter verlief als im Holz europäischer Laubbäume. Der Gehalt an Lignin und organischen Extraktiven beeinflusste – abgesehen von einigen artenspezifischen Inhibitoren – nur geringfügig den enzymatischen Aufschluss der Polysaccharid-Komponenten. Die Vorbehandlung mit dem Glycosidase-Präparat aus P. janthinellum führte zu einer Verbesserung der Biogasbildung und zum Ausbleiben der für faserreiche Substrate typischen Lag-Phase während der ers-ten Tage der anaeroben Vergärung der Lignocellulose aus Triticum sp. (Weizen-stroh) und Pinus sylvestris (Kiefernspäne). Dabei erhöhte sich der finale Biogasertrag innerhalb des Untersuchungszeitraums signifikant. Die genannten positiven Effekte einer enzymatischen Vorbehandlung könnten sich in kontinuierlich betriebenen großtechnischen Biogasanlagen als nützlich erweisen: Zum einen ließen sich die Gaserträge deutlich erhöhen und zum anderen könnte die erforderliche Verweilzeit des Substrates im Bioreaktor (Fermenter, Faulturm) und somit das benötigte Anlagenvolumen reduziert werden. Eine vorausgehende Oxidation des im Substrat enthaltenen Lignins mit Hilfe der MnP erwies sich in der nachfolgenden Behandlung mit Glycosidasen als förderlich hinsichtlich der Freisetzung von Zuckern aus dem Holz von Fagus sylvatica (Rotbuche). Verglichen mit der häufig verwendeten Malonsäure war die Citronensäure, ein pilzlicher Metabolit des Intermediär-Stoffwechsels (Zitronensäurezyklus), ein wirksamerer Mangan-Chelator für diese Voroxidation mittels MnP. Dies hing möglicherweise mit der höheren chemischen Reaktivität der Citronensäure zu-sammen, was eine verstärkte Bildung chemischer Radikale zur Folge hatte. Eine enzymatische Vorbehandlung mittels DyP und dem Glycosidase-Gemisch in einer Reaktionskaskade wirkte sich ebenfalls positiv auf die Biogasbildung, in diesem Fall aus Bagasse von Saccharum officinarum (Zuckerrohr), aus. Dabei kam es wahrscheinlich auch zu einer partiellen Oxidation und Zerstörung des Lignins und damit zu einer Verbesserung der Zugänglichkeit der Zellwand-Polysaccharide. Im Ergebnis konnten Cellulose und Hemicellulosen in späteren Phasen der anaeroben Vergärung von den entsprechenden Mikroorganismen (Bakterien, Archaeen) besser verwertet werden. Der Voraufschluss mit Glycosidasen führte hingegen in der initialen Phase der anaeroben Vergärung zu positiven Effekten bezüglich der Biogasbildung, indem die bereitgestellten Einfachzucker (z.B. Glucose, Xylose) rasch in Methan umgewandelt wurden. Beim Vergleich verschiedener biologischer Aufschlussverfahren erwies sich eine kombinierte Vorbehandlung des Substrates („Stroh“ von Miscanthus × giganteus), bestehend aus einer Vorhydrolyse durch das Glycosidase-Gemisch und einer Vorfermentation mit einer Mischkultur gärender Mikroorganismen, als der effektivste Weg. Durch die kombinierte biologische Vorbehandlung konnte ein ähnlich hoher Methanertrag wie für Maissilage (das derzeit optimale Substrat in Biogasanlagen) erreicht werden. In der entsprechenden mikrobiellen Vorkultur wurde ein Bacillus-Vertreter aus dem so genannten Bacillus-subtilis-Artkomplex (Bacillus subtilis species-complex) mittels klassischer mikrobiologischer und molekularbiologischer Analysen als möglicher „abbaurelevanter Organismus“ identifiziert. / The biological disintegration of lignocellulosic biomass by microorganisms and their enzymes is – in comparison to established physical and chemical approaches –environmentally friendly and sustainable. The broad use of isolated bacterial or fungal hydrolases and oxidoreductases requires, however, still substantial optimization because of too low catalytic performance and too high production costs for the enzymes. Against this background, there is the possibility, besides genetic improvement of enzyme properties by protein and metabolic engineering, to optimize the process performance of enzymes as well as the reaction conditions. The latter approach has been subject of the present dissertation, in the course of which a non-commercial preparation of glycosidases from the ascomycetous mold Penicillium janthinellum, which is well-known for its high β-glycosidase activities, was used for the enzymatic disintegration of fiber-rich substrates (lignocelluloses). Experimental work focused on the combined action of the glycosidase mixture with two fungal peroxidases (manganese peroxidase, MnP and dye-decolorizing peroxidase, DyP). Furthermore, comparing studies were carried out regarding enzymatic/biological lignocellulose disintegration by isolated fungal glycosidases and/or microbial precultures. Lignocellulose substrates studied (wood, straw-like materials) originated from temperate and tropic climate zones (Europe and Cambodia, respectively) and were used after chopping in all experiments without further pretreatment. The concentration of low-molecular mass sugars (in first place monosaccharides), which were being released from the substrates during enzyme action as well as the biogas yield that was achieved via fermentation of enzymatically or microbiologically pretreated samples, were taken into consideration to evaluate the efficacy of respective treatments. Moreover, the microbial preculture used in the above experiments was analyzed on the molecular level to an extent that it was possible to identify a bacterial key species that was involved in the degradation of lignocellulosic biomass. The enzymatic treatment of selected lignocellulosic substrates with the glycosidase mixture of P. janthinellum was successful and the results are – according to literature data – comparable to results reported for the best industrial cellulase preparations. In first place, glucose und xylose were released from different cell-wall polysaccharides, and the conversion of cellulose und hemicelluloses in the wood of tropical broad-leaved trees was more efficient than in wood of respective European trees. The content of lignin and organic extractives only slightly affected the enzymatic disintegration of polysaccharide components (apart from a few species-specific inhibitors). Substrate pretreatment with the glycosidase preparation of P. janthinellum resulted in an enhancement of biogas formation and in the disappearance of the lag-phase being characteristic for the conversion of fiber-rich substrates during the first days of anaerobic treatment of lignocelluloses from Triticum sp. (wheat straw) und Pinus sylvestris (wood shavings). In this context, the final biogas yields significantly increased in the course of the experiments. The observed positive effects of enzymatic pretreatment may be beneficially ap-plied in continuously working biogas plants. That way, on one hand, the gas yields could be considerably enhanced and on the other hand, the required retention time of the substrates in the bioreactor (fermenter, digestion tower) and hence the required reactor volume could be reduced. The preceding oxidation of substrate-bound lignin with MnP turned out to be beneficial for the subsequent glycosidase treatment with respect to the release of sugars from beech wood (Fagus sylvatica). In comparison to widely used malonic acid, citric acid – a ubiquitous fungal metabolite of the intermediary metabolism (tricarboxylic acid cycle) –proved to be the more effective manganese chelator for the pre-oxidation of lignin by MnP. Probably this corresponds to the higher chemical reactivity of citric acid, which entails a forced formation of chemical radicals. Enzymatic substrate pretreatment with DyP and the glycosidase mixture within a reaction cascade had also a positive effect on the formation of biogas, in this case, from bagasse of Saccharum officinarum (sugar cane). During the respective treatment, the lignin might partially be oxidized as well and thereby, the availability of cell-wall polysaccharides was improved for hydrolase action. As the result, microorganisms (bacteria, archaea) consumed cellulose and hemicelluloses more efficiently during later phases of anaerobic fermentation. On the other hand, glycosidase pretreatments had positive effects in the initial phase of fermentation, regarding biogas formation from the ‘made-available’ monosaccharides (e.g. glucose, xylose) that were immediately converted into methane. When comparing different biological methods to disintegrate lignocellulose, pre-hydrolysis with a glycosidase mixture combined with fermentative pretreatment proved to be the most effective option (demonstrated by the example of ‘straw’ from Miscanthus × giganteus). That way, a similarly high methane yield could be achieved as with maize silage (for the time being, the most suitable substrate used in biogas facilities). In the respective microbial preculture, a Bacillus species from the Bacillus subtilis species-complex was identified as a relevant potential degrader microbe by classic microbiological and molecular analyses.
406

Experimental Studies and Modeling of Solid-State Anaerobic Digestion for Enhanced Methane Production from Lignocellulosic Biomass

Xu, Fuqing 29 October 2014 (has links)
No description available.
407

The Relationships of Pathogenic Microbes, Chemical Parameters, and Biogas Production During Anaerobic Digestion of Manure-based Biosolids

Rosenblum, James S. January 2013 (has links)
No description available.
408

Anaerobic Digestion of Yard Waste and Biogas Purification by Removal of Hydrogen Sulfide

Cherosky, Phil Boone 22 June 2012 (has links)
No description available.
409

Developing biofertilisers in Grenada from the residues of an anaerobic digestion plant using Sargassum seaweed : Evaluating how problematic Sargassum algae can be turned in to a resource in Caribbean states / Framställning av gödselmedel genom anaerobisk nedbrytning av Sargassotång i Grenada : Utvärdering av hur problematisk Sargassotång kan omvandlas till en resurs i Karibien

Elfving, Danielle Crowter, Stahre, Emma January 2022 (has links)
The West Indies have during recent years been experiencing large quantities of washed up Sargassum seaweed on beaches and coastlines causing many issues for local communities such as unpleasant odours, making beaches inaccessible and largely affecting tourism and fisheries. The issue has caused money loss for the communities both in cleaning costs and decreasing incomes from tourism and fishing. In an attempt to turn this destructive debris into a useful resource, this study aimed to determine the potential for Sargassum that has been anaerobically digested to be used as a liquid fertiliser on Grenada. Sargassum seaweed was collected from the Atlantic coast of Grenada and transported and fed to a biogas plant where the algae was anaerobically digested. The residues were collected and fed to Pak Choi crops in a cultivation experiment where the fertiliser was compared with other treatment methods in order to determine its efficiency as a fertiliser. Interviews of farmers on Grenada were also conducted during the project to examine the potential and usefulness of the biofertiliser on the local Grenada farms. It was found that the digestate product from the anaerobic digestion showed good potential as a biofertiliser, producing larger and healthier crops than the other methods of treatments, among them artificial fertiliser. A potential market for the product was also identified as all the interview subjects reported that artificial fertilisers can be hard or impossible to find on Grenada sometimes of the year, due to the island's high reliance on shipping containers for import, leading to a demand of alternative fertilisers. / Under de senaste åren har algblomningarna ökat runt om i Västindien och numera är flertalet stränder  fyllda av Sargassotång. Ett av länderna som har påverkats negativt är Grenada. Stora mängder Sargassum når östkusten av Grenada under större delen av året till skillnad från tidigare år då algerna enbart sköljdes in under vissa perioder och i mindre kvantiteter. Algmassorna leder till lokal övergödning i de drabbade områdena, vilket i sin tur leder till minskad syrekoncentration i vattnet och en stor påverkan på djur och växter i ekosystemet. I Grenada påverkar makroalgerna även inkomstkällan för fiskare då de inte kan arbeta när det är som mest alger eftersom båtarna inte kan ta sig förbi massorna i vattnet. Även lokalbefolkning och turister påverkas då nedbrytningen av algerna skapar en motbjudande lukt vilket leder till att människor flyttar från dessa områden och att turistnäringen minskar. Grenada har ett behov av att minska mängden alger längs stränderna och samtidigt finns en möjlighet att ta tillvara en lokal bioresurs. En möjlighet är att använda algmassan till produktion av biogas och biogödningsmedel eftersom nedbrytning av makroalgeralger både kan producera metangas samt att  återstående restbiomassa innehåller de viktigaste näringsämnen som växter behöver för att växa. Därför  har algerna använts i ett försök på True Blue Bay Boutique Resorts anläggning på Grenada för att producera biogas och gödsel med hjälp av en mindre biogasanläggning. Anläggningen matas med biomassa och därefter har en gas och en restprodukt producerats. Restprodukten har därefter används som gödningsmedel i ett odlingsförsök med Pak Choi för att fastlägga dess kvalitet som växtnäring. Plantor gödslades med restprodukter från biogasanläggningen, både när anläggningen matats med grisgödsel och hushållskompost i början samt när födan successivt övergick till alger. Andra plantor fick konstgödsel eller färska alger. Utöver det fanns det en grupp med plantor vilka inte tog del av någon form av gödsel för att fungera som en kontrollgrupp. Vid slutet av odlingsförsöket skördades Pak Choi grödorna och produktivitet och kvalitet på grödorna bedömdes baserat på olika kriterier. Resultaten visade att de växter som blivit gödslade med resterna från biogasanläggningen var störst och av bäst kvalitet. Därutöver har en undersökning genomförts för att få en större förståelse för hur tillgången på alger ser ut och för att få en bild över hur lantbrukares behov av gödningsmedel ser ut på Grenada. Lantbrukare har tillfrågats om tillgång och efterfrågan på olika sorters gödsel, hur de använts och om de har några erfarenheter från Sargassotång. Deras åsikter har varierat, men en gemensam nämnare är att alla är intresserade av lokalproducerade gödningsmedel. Konstgödsel är kostsamt och det kan vara svårt eller omöjligt att få tag på under vissa delar av året, då landet förlitar sig på import. Genom detta har en potentiell marknad för gödselmedel producerat med alger fastställts.
410

Wasted Biogas : Economic analysis of biogas recovery adjoined to existing incineration facility in Sweden

Johansson, Tobias, Målsten, Theo January 2020 (has links)
Biogas is of growing interest in Sweden, and a public inquiry suggested the government to set a goal of producing 10 TWh biogas in 2030 although only 2 TWh biogas was produced in Sweden in 2018 (Regeringskansliet, 2019) (Klackenberg, 2019). To achieve this optimistic goal and to meet the increased demand of biogas, new biogas production facilities needs to be built. The purpose of this report is to investigate the economic feasibility for the development of a biogas recovery process adjoined to an incineration facility in Sweden. The report first gives an overview of the largest incineration facilities in Sweden. The largest quantity of food waste was estimated in Gothenburg to be 56´744 WRQ SeU \eaU. For the economic feasibility, a conceptual facility was constructed with 169´000 ton residual waste per year of which 45´000 ton was food waste. A biogas process model was built in Excel where the biogas potential was calculated using characteristics for food waste. The annual production of liquid biogas was estimated to 43´970 MWK. The economic evaluation was based on the conceptual facility. In the baseline scenario the incomes for the process was the value of liquid biogas, 25,6 MSEK per year, a Gate-fee synergy of 5 MSEK per year and a Tax deduction synergy of 1 MSEK per year. The investment cost was estimated to 211,6 MSEK and the Operation & Maintenance cost was estimated to 6,3 MSEK per year. This resulted in an NPV of 69,5 MSEK and an IRR of 10,3% for the project, indicating a profitable investment. Three different scenarios were considered, apart from the baseline scenario, where the first excluded all synergies with the incineration facility, which generated an NPV of 2,3 MSEK. The second scenario only considered the minimal gate-fee synergy which gave an NPV of 37,8 MSEK. Finally, the third scenario where all synergies were included, and an additional investment grant was introduced gave the project an NPV of 111,8 MSEK. A sensitivity analysis was also conducted which showed that the input of food waste treated, weighted average cost of capital and potential grants had the biggest impact on the financial results. None of the results from the sensitivity analysis showed a negative NPV. / Intresset för biogas växer i Sverige och i en statlig utredning föreslogs regeringen att sätta upp ett mål att producera 10 TWh biogas 2030 (Regeringskansliet, 2019). Detta kan jämföras med 2018 då endast 2 TWh producerades (Klackenberg, 2019). För att uppnå detta optimistiska mål och för att möta den ökade efterfrågan på biogas behöver nya produktionsanläggningar byggas. Syftet med denna rapport är att undersöka de ekonomiska möjligheterna för utvecklingen av en biogasanläggning angränsad till en förbränningsanläggning i Sverige. Rapporten ger först en översikt över de största förbränningsanläggningarna som behandlar hushållsavfall i Sverige. Det uppskattades att den största mängden matavfall som går till förbränning i Sverige är i Göteborg där 56´744 ton matavfall förbränns per år. För att bestämma de ekonomiska förutsättningarna konstruerades en konceptuell anläggning som behandlar 169´000 ton restavfall per år varav 45 000 ton består av matavfall. En biogasprocess modellerades i Excel där den potentiella biogasen beräknades baserat på matavfallets karaktäristik. Slutligen uppskattades den årliga produktionen av flytande biogas till 43´970 MWh. Den ekonomiska utvärderingen baserades på den konceptuella anläggningen. I grund-scenariot bestod inkomsterna för av den flytande biogasen som motsvarade 25,6 MSEK per år, en ´gatefee´-synergi på 5 MSEK per år och en ´skatteavdrags´-synergi motsvarande 1 MSEK per år. Investeringskostnaden uppskattades till 211,6 MSEK och Operation & Maintenancekostnaderna uppskattades till 6,3 MSEK. Detta gav projektet ett nettonuvärde på 69,5 MSEK och en internränta på 10,3% vilket indikerar en lönsam investering. Vidare undersöktes även tre olika scenarier, utöver grund-scenariot, där det första utesluter alla synergier vilket gav ett nettonuvärde på 2,3 MSEK. Det andra scenariot beaktade endast den minimala ´gate-fee´-synergin vilket gav ett nettonuvärde på 37,8 MSEK. Det tredje scenariot inkluderade alla synergier samt ett investeringsbidrag vilket resulterade i ett nettonuvärde på 111,8 MSEK. En känslighetsanalys genomfördes också som visade att tillförseln av behandlat matavfall, kapitalkostnaden och potentiella investeringsbidrag hade den största påverkan på de finansiella resultaten. Inget av resultaten från känslighetsanalysen visade ett negativt nettonuvärde.

Page generated in 0.0931 seconds