• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 918
  • 498
  • 181
  • 108
  • 103
  • 40
  • 39
  • 21
  • 20
  • 16
  • 16
  • 13
  • 9
  • 9
  • 7
  • Tagged with
  • 2279
  • 314
  • 286
  • 269
  • 257
  • 244
  • 241
  • 233
  • 233
  • 189
  • 188
  • 187
  • 161
  • 156
  • 146
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

ANTENNA CONTROL FOR TT&C ANTENNA SYSTEMS

Kaiser, Julius A., Herold, Fredrick W. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / A thinned array sensor system develops error voltages for steering dish antennas from signals arriving over a broad range of angles, thereby eliminating need for a priori knowledge of signal location.
242

Signal processing methods to quantify scattering of angle-beam shear waves from through-holes in plates

Kummer, Joseph W. 07 January 2016 (has links)
The objective of this thesis is to present analysis techniques that quantify the scattering of angle-beam ultrasonic waves from through-holes in plates. This topic is of interest because increased understanding of the scattering of ultrasonic waves by a defect is important for the development of many nondestructive evaluation (NDE) applications. Angle-beam techniques are commonly used in industry to detect and characterize defects, and many structures of concern have plate-like components. Scattering from through-holes is particularly important because cracks tend to form around fastener holes, which have high stress concentrations. In addition, varying boundary conditions within a fastener hole can change over the course of a structure’s lifetime and may have significant effects on NDE results. In this research, two signal processing techniques are developed to obtain scattering information from through-holes for a variety of fill conditions, including epoxy and complete and partial filling with metal inserts, using experimentally acquired wavefield measurements. Experimental procedures for acquiring wavefields, which measure the out of plane motion of ultrasonic waves on the surface of a specimen and allow for the visualization and characterization of propagating waves, are presented. Methods for obtaining radial and directional energy maps, which quantify scattering as a function of scattered angle and phase velocity, are described. In addition, baseline subtraction is used to obtain scattering patterns for both methods, which quantify scattering as a function of polar angle for each wave mode present in the wavefield. These techniques are applied to wavefield measurements from through-holes with various fill conditions to investigate the effects of boundary conditions on ultrasonic scattering. A comparison of the radial and directional energy mapping techniques, discussing the strengths and weaknesses of each approach, is provided, and recommendations are made for future work.
243

Measuring and modelling light scattering in paper

Johansson, Niklas January 2015 (has links)
Avhandlingen behandlar de teoretiska och praktiska aspekterna av att använda spektrala vinkelupplösta reflektansmätningar för optisk karakterisering av fiberbaserade material såsom papper och kartong. En spektral goniofotometer används för att mäta det reflekterade ljusets vinkelfördelning. En stor del av arbetet utgörs av att utvärdera instrumentets noggrannhet, samt utreda hur de vinkelupplösta mätningarna skall utföras på bästa sätt för att erhålla en så fullständig karakterisering som möjligt. Det reflekterade ljuset består av tre komponenter; ytreflektans, bulkreflektans samt fluorescens. En fullständig karakterisering förutsätter att dessa tre komponenter kan analyseras separat, vilket i detta arbete görs genom nyutvecklade metoder. En metod har utvecklats för separation av ytreflektans och bulkreflektans. Metoden bygger på att analysera hur den totala reflektansen förändras vid ökande absorption i det reflekterande materialet. Absorptionen kontrolleras genom inkjet-tryckning där tryckfärg appliceras på substratet i sådan mängd att bulkreflektansen helt släcks ut. Genom att kombinera mätningar på tryckt och otryckt substrat kan de båda komponenterna separeras. Trots att ytreflektansen från ett matt papper är liten i förhållande till bulkreflektansen, så visar resultaten att den ökar markant med ökande betraktningsvinkel och kan därmed ha stor inverkan på den totala reflektansen. Bidraget från fluorescens kan kvantitativt analyseras genom att kombinera mätningar utförda med respektive utan UV-filter. Vinkelupplösta mätningar och Monte Carlo-simuleringar av fluorescensens vinkelfördelning visar att dess anisotropi är relaterad till det medeldjup vid vilket fluorescensen emitteras. Resultaten förklarar observerade skillnader och motstridigheter i tidigare rapporterade studier kring huruvida fluorescens kan anses vara Lamberskt fördelad. Samtliga goniofotometriska mätningar är utförda med ett kompakt, kommersiellt tillgängligt, dubbelstråleinstrument. För att undersöka instrumentets lämplighet för absoluta reflektansmätningar utförs en analys av dess mätnoggrannhet. Resultaten visar att instrumentets kompakta storlek i kombination med den anisotropa reflektansen från papper introducerar systematiska fel av samma storleksordning som den totala mätnoggrannheten. Dessa fel uppstår på grund av den relativt stora detektorapertur som måste användas vid mätningar av diffus reflektans, vilket är karakteristiskt för papper och kartong. Resultaten visar även att felen är störst vid flacka mätvinklar och för prover med hög grad av anisotropisk reflektans, och en geometrisk korrektionsmetod för denna typ av systematiska fel föreslås. Spektrala och vinkelupplösta mätningar medför per automatik stora mängder mätdata. Genom att använda strålningstransportteori som en matematisk modell för hur ljus sprids i papper kan mätdatat reduceras till en uppsättning beskrivande materialparameterar. Att uppskatta dessa optiska parametrar utifrån vinkelupplösta reflektansmätningar är i sig ett komplicerat problem, vilket dessutom är känsligt för mätfel och val av mätvinklar. Detta inversa problem analyseras i detalj, och speciellt hur valet av mätvinklar kan reduceras utan att försämra förutsättningarna för estimeringen. Simuleringar visar att mätningarna kan begränsas till infallsplanet, eller till och med enbart framåtriktningen, så länge tillräckligt flacka mätvinklar är inkluderade i mätsekvensen. / This thesis is about measuring and modelling light reflected from paper by using goniophotometric measurements. Measuring bidirectional reflectance requires highly accurate instruments, and a large part of the work in this thesis is about establishing the requirements that must be fulfilled to ensure valid data. A spectral goniophotometer is used for measuring the light reflected from paper and methods are developed for analyzing the different components, i.e. the fluorescence, surface reflectance and bulk reflectance, separately. A separation of the surface and bulk reflectance is obtained by inkjet printing and analyzing the total reflectance in the absorption band of the ink. The main principle of the method is to add dye to the paper until the bulk scattered light is completely absorbed. The remaining reflectance is solely surface reflectance, which is subtracted from the total reflectance of the undyed sample to give the bulk reflectance. The results show that although the surface reflectance of a matte paper is small in comparison with the bulk reflectance, it grows rapidly with increasing viewing angle, and can have a large influence on the overall reflectance. A method for quantitative fluorescence measurements is developed, and used for analyzing the angular distribution of the fluoresced light. The long-standing issue whether fluorescence from turbid (or amorphous) media is Lambertian or not, is resolved by using both angle-resolved luminescence measurements and radiative transfer based Monte Carlo simulations. It is concluded that the degree of anisotropy of the fluoresced light is related to the average depth of emission, which in turn depends on factors such as concentration of fluorophores, angle of incident light and the absorption coefficient at the excitation wavelength. All measurements are conducted with a commercially available benchtop sized double-beam spectral goniophotometer designed for laboratory use. To obtain reliable results, its absolute measurement capability is evaluated in terms of measurement accuracy. The results show that the compact size of the instrument, combined with the anisotropic nature of reflectance from paper, can introduce significant systematic errors of the same order as the overall measurement uncertainty. The errors are related to the relatively large detection solid angle that is required when measuring diffusely reflecting materials. Situations where the errors are most severe, oblique viewing angles and samples with high degree of anisotropic scattering, are identified, and a geometrical correction is developed. Estimating optical properties of a material from bidirectional measurements has proved to be a challenging problem and the outcome is highly dependent on both the quality and quantity of the measurements. This problem is analyzed in detail for optically thick turbid media, and the study targets the case when a restricted set of detection angles are available. This is the case when e.g. an unobstructed view of the sample is not possible. Simulations show that the measurements can be restricted to the plane of incidence (in-plane), and even the forward direction only, without any significant reduction in the precision or stability of the estimation, as long as sufficiently oblique angles are included.
244

Internal crossflow effects on turbine airfoil film cooling adiabatic effectiveness with compound angle round holes

Klavetter, Sean Robert 07 October 2014 (has links)
Internal crossflow is an important element to actual gas turbine blade cooling; however, there are very few studies in open literature that have documented its effects on turbine blade film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of perpendicular crossflow on a row of 45 degree compound angle, cylindrical film cooling holes. Tests included a standard plenum condition, a baseline crossflow case consisting of a smooth-walled channel, and various crossflow configurations with ribs. The ribs were angled to the direction of prevailing internal crossflow at 45 and 135 degrees and were positioned at different locations. Experiments were conducted at a density ratio of DR=1.5 for a range of blowing ratios including M=0.5, 0.75, 1.0, 1.5, and 2.0. Results showed that internal crossflow can significantly influence adiabatic effectiveness when compared to the standard plenum condition. The implementation of ribs generally decreased the adiabatic effectiveness when compared to the smooth-walled crossflow case. The highest adiabatic effectiveness measurements were recorded for the smooth-walled case in which crossflow was directed against the spanwise hole orientation angle. Tests indicated that the direction of perpendicular crossflow in relation to the hole orientation can significantly influence the adiabatic effectiveness. Among the rib crossflow tests, rib configurations that directed the coolant forward in the direction of the mainstream resulted in higher adiabatic effectiveness measurements. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors are responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, jet exit velocity profiles, and in-hole vortices. / text
245

Stiffness and fatigue behavior of cross frames for steel bridge applications

Battistini, Anthony David 06 November 2014 (has links)
Cross frames are critical for the stability of straight and curved steel bridges. Conventional cross frames are often fabricated from steel angles which are welded to gusset plates through one leg only. Due to this eccentric connection, these angles have substantial bending at the connection that can reduce the member stiffness and can potentially decrease fatigue performance. Because of the low buckling strength, cross frames with angle diagonals are often designed as tension-only systems, therefore increasing the necessary steel to be an effective brace. Improved behavior may result if concentric members are utilized. The increased buckling strength of tubes and double angles results in effective members in both compression and tension, and a single diagonal cross frame can provide effective bracing; however, a suitable connection must be developed. Tubes are often connected by slotting the tube in the center and welding to a gusset plate, which requires precise fabrication. Two proposed solutions that would connect easily to the ends of the member and seal the end of the tube include a steel casting and a T-stem connection. The dissertation studies the development of a steel casting for use in cross frame design and evaluates the performance of the various details described herein in regards to stiffness, strength, and fatigue. Additionally, the dissertation covers the behavior of single angle X and K frame configurations. To date, the determination of the single angle fatigue detail has been largely based on component tests only. The project incorporated full-scale cross frame fatigue tests to fully examine the interaction of the cross frame members with the overall structure. Results from currently used details and proposed connections provide insight to the live load behavior of these braces and multiple recommendations are made to improve the fatigue life. The project examined the stiffness behavior of current and proposed cross frame layouts with large-scale laboratory tests and computational modeling. From these results, a case study compares the fatigue analysis of a commercial structural software package to the stress ranges obtained in a three-dimensional finite element model. Suggestions on how to properly model the cross frames are given. / text
246

Effects of the fluid rheology and surface texture on the footprint of passive droplets.

Ahmed, Gulraiz January 2014 (has links)
Bloodstain pattern analysis has been used in criminal investigations for more than 100 years. It provides valuable information about the events that took place prior to the formation of bloodstains at a crime scene. Forensic scientists use empirical laws to make a deduction from bloodstains, but the validity of these conclusions has been challenged in courts due to a lack of understanding of the underlying fluid mechanics. With this motivation, this thesis illustrates how mathematical modeling and numerical simulation can help gain insight into the spreading of blood droplets which eventually leads to the formation of a bloodstain. Understanding the fluid mechanics of droplet spreading and sliding has been accomplished with the help of the lubrication approximation which simplifies the Navier-Stokes equations to a more tractable form, i.e. a coupled set of non-linear partial differential equations. The resulting highly non-linear coupled set of equations is discretized using Finite-Difference. The resulting algebraic system is solved via an efficient Multigrid algorithm. These equations are modified to understand the effects of contact angle hysteresis, fluid rheology and absorptive properties of substrates on sliding dynamics. Variations in the inclination of the substrate cause the droplets to attain different advancing and receding contact angles as they slide down the incline under gravitational pull. This work explores a new way to introduce contact angle hysteresis in the numerical simulation to predict the different phases of a sliding droplet. Experiments of fluid droplet spreading/sliding on inclined surfaces have been performed to measure the terminal sliding velocity. A simplified hysteresis model has been proposed. This model automatically locates the section of the contact line which is advancing and the section which is receding which enables the application of the contact angles for the advancing and receding fronts and therefore takes into account contact angle hysteresis. A simplified analytical model is also suggested for droplets moving down the incline with near circular footprints. With the inclusion of the contact angle hysteresis, simulation results were brought in closer agreement with the experimental ones and the results from both were compared with the results from the analytical model. Blood is a shear-thinning fluid. One of the main objectives of this study is to investigate numerically the effect on the spreading and/or sliding of non-Newtonian fluid droplets on surfaces. To achieve this, the effect of rheology on the leveling of thin fluid films on horizontal solid substrates is first investigated as a preliminary investigation since this problem does not involve a contact line and is therefore more tractable. A mathematical model based on the lubrication approximation which defines non-Newtonian rheology using a power-law model is presented. Results for the leveling of sinusoidal perturbations of the fluid film highlight important differences between the leveling of shear-thinning and shear-thickening fluids. Namely, the onset of leveling occurs earlier for the shear-thinning fluid than for the shear-thickening one. However, the rate of leveling is higher for the shear-thickening fluid than the shear-thinning one. An important aspect of this part of the work is the verification of the numerical implementation using the Method of Manufactured Solutions (MMS). This leveling study also highlights differences between the leveling of two-dimensional and three-dimensional perturbations. This verified numerical formulation is then used to study the effects of rheology on the spreading/sliding of droplets. Results for the spreading of fully wetting droplets on a horizontal substrate show that, for all other quantities being equal, an increase of the flow index leads to a more rapid wetting. It also shows that, even for non-Newtonian fluids, the droplet velocity asymptotes to a constant value when sliding down an inclined substrate. This terminal velocity is strongly dependent on the rheological parameters and as it is reached, the droplets travel with a visibly constant profile. Finally, the numerical simulations revealed the formation of a tail at the rear of the droplet as it slides down the incline plane in the case of shear-thickening fluids. Finally, a more complex dynamics of fluid being absorbed in a porous substrate as it slides/spreads is considered. A mathematical model based on the lubrication approximation which defines the absorptive property of a substrate using a Darcy’s model is presented. This numerical model is verified with the help of comparison between the analytical and numerical solutions for the absorption of thin film on horizontal porous substrates. Results show that physical properties of the substrates, i.e. permeability, porosity, capillary pressure and equilibrium contact angle affect the rate of absorption of the fluid. Adding inclination to the problem, introduces the gravitational pull in the absorption dynamics. This directly shows its effects on the footprints formed inside the porous substrates. The following papers, based on sections of this thesis, have appeared or been accepted for publication: - Ahmed, G., Sellier, M., Lee, Y., Jermy, M., and Taylor, M. (2013). Modeling the spreading and sliding of power-law droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432:2–7. - Ahmed, G., Sellier, M., Lee, Y., Jermy, M., and Taylor, M. (2014). Rheological effects on the leveling dynamics of thin fluid films. Accepted for publication in the International Journal of Numerical Methods for Heat and Fluid Flow. - Ahmed, G., Sellier, M., Jermy, M., and Taylor, M. (2014). Modelling the effects of contact angle hysteresis on sliding of droplets on inclined surfaces. Submitted for peer review in The European Journal of Mechanics - B/Fluids.
247

Novel Methods in SEMG-Force Estimation

Hashemi, Javad 29 August 2013 (has links)
An accurate determination of muscle force is desired in many applications in different fields such as ergonomics, sports medicine, prosthetics, human-robot interaction and medical rehabilitation. Since individual muscle forces cannot be directly measured, force estimation using recorded electromyographic (EMG) signals has been extensively studied. This usually involves interpretation and analysis of the recorded EMG to estimate the underlying neuromuscular activity which is related to the force produced by the muscle. Although invasive needle electrode EMG recordings have provided substantial information about neuromuscular activity at the motor unit (MU) level, there is a risk of discomfort, injury and infection. Thus, non-invasive methods are preferred and surface EMG (SEMG) recording is widely used. However, physiological and non-physiological factors, including phase cancelation, tissue filtering, cross-talk from other muscles and non-optimal electrode placement, affect the accuracy of SEMG-based force estimation. In addition, the relative movement of the muscle bulk and the innervation zone (IZ) with respect to the electrode attached to the skin are two major challenges to overcome in force estimation during dynamic contractions. The objective of this work is to improve the accuracy of SEMG-based force estimation under static conditions, and devise methods that can be applied to force estimation under dynamic conditions. To achieve this objective, a novel calibration technique is proposed, which corrects for variations in the SEMG with changing joint angle. In addition, a modeling technique, namely parallel cascade identification (PCI) that can deal with non-linearities and dynamics in the SEMG-force relationship is applied to the force estimation problem. Finally, a novel integrated sensor that senses both SEMG and surface muscle pressure (SMP) is developed and the two signal modalities are used as input to a force prediction model. The experimental results show significant improvement in force prediction using data calibrated with the proposed calibration method, compared to using non-calibrated data. Joint angle dependency and the sensitivity to the location of the sensor in the SEMG-force relationship is reduced with calibration. The SEMG-force estimation error, averaged over all subjects, is reduced by 44\% for PCI modeling compared to another modeling technique (fast orthogonal search) applied to the same dataset. Significantly improved force estimation results are also achieved for dynamic contractions when joint angle based calibration and PCI are combined. Using SMP in addition to SEMG leads to significantly better force estimation compared to using only SEMG signals. The proposed methods have the potential to be combined and used to obtain better force estimation in more complicated dynamic contractions and for applications such as improved control of remote robotic systems or powered prosthetic limbs. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2013-08-20 20:46:56.897
248

Flowfield measurements in the vortex wake of a missile at high angle of attack in turbulence

Lung, Ming-Hung 12 1900 (has links)
Approved for public release; distribution is unlimited / The flowfield downstream of a vertically-launched surface-to-air missile model at an angle of attack of 50° and a Reynolds number of 1.1 x 10(5) was investigated in a wind tunnel of the Naval Postgraduate School. The goal of this thesis is to experimentally validate the pressure measurement system for flowfield variables with elevated levels of turbulence; to determine the location and intensity of the asymmetric vortices in the wake of the VLSAM model at a raised level of freestream turbulence; and to display the asymmetric vortices by velocity mapping and pressure contours. The purpose is to correlate the results with the force measurements of Rabang to provide a greater understanding of the vortex flowfield. The body-only configuration was tested. Two flowfield conditions were treated: the nominal ambient wind tunnel condition, and a condition with grid­ generated turbulence of 3.8% turbulence intensity and a dissipation length scale of 1.7 inches. The following conclusions were reached: 1) The relative strengths of the asymmetric vortices can be noted by the sharp spike shape in the ambient condition; this condition becomes diffused and becomes fatter in the turbulent condition; 2) The right side vortex has greater strength than the left side one as seen by the diffusion in the total pressure coefficient and static pressure coefficient contours with and without a turbulent condition; 3) an increase in turbulence intensity tends to reduce the strength of the asymmetric nose-generated vortices; also pushes the two asymmetric vortices closer together; 4) and crossflow velocities were examined and were found to indicate the behavior denoted by the pressure contours. / http://archive.org/details/flowfieldmeasure00lung / Lieutenant, Republic of China Navy
249

Orthodontists' and Parents' Perspective of Occlusion in Varying Anterior-Posterior Positions: A Comparative Study

Lindsey, David H 01 January 2017 (has links)
Objective: The purpose was to compare orthodontists’ and parents’ perception of orthodontic treatment outcomes in the anterior-posterior (AP) dimension. Assessment of treatment time and compliance were also investigated. Material and Methods: Parallel surveys for orthodontists (n=1000) and parents (n=750) displayed occlusions from 3 mm Class III (Cl III:3) to 3 mm Class II. Participants rated occlusal relationships on a 100 mm VAS from least to most acceptable (0-100). Results: 233 orthodontists (23%) and 243 parents (32%) responded. Orthodontists (mean=93.9, 25.9) and parents (mean=80.7, 40.9) rated Class I (Cl I) occlusion most and Cl III:3 least acceptable. No significant difference was found between outcomes at 18 months versus 24 months. For all cases, parents were willing to extend treatment duration longer than orthodontists. Conclusions: Orthodontists and parents viewed treatment outcomes in the AP dimension differently, rating Cl I as most acceptable. Parents were willing to extend treatment longer than orthodontists.
250

An experimental investigation of a fighter aircraft model at high angles of attack

Leedy, David Humbert 09 1900 (has links)
Approved for public release; distribution is unlimited / A low speed wind tunnel investigation was conducted to examine the aerodynamic characteristics of the flowfield around a three percent scale YF-17 lightweight fighter prototype model at high angles of attack using flow visualization and force and moment measurements. Smoke filaments, injected into the wind tunnel test section, were illuminated by a laser sheet to highlight flow phenomena about the model. Force and moment measurements were made using a precision six-component strain gage balance. The investigation marked the first attempt at qualitative flow analysis using the laser sheet flow visualization system recently installed in the Naval Postgraduate School low speed wind tunnel facility. The investigation was undertaken to specifically identify flow phenomena and/or regions of interest that may have bearing on the design and performance of supermaneuverable aircraft. The data indicate a good correlation between the observed flow phenomena and force and moment measurements at various angles of attack, thus establishing the credibility of such experimental investigations for high angle of attack aerodynamic research. / http://archive.org/details/experimentalinve00leed / Lieutenant Commander, United States Navy

Page generated in 0.0342 seconds