• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 12
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 143
  • 143
  • 50
  • 43
  • 37
  • 24
  • 24
  • 21
  • 20
  • 15
  • 15
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A quantum logic approach to the addition of spin angular momenta

Sisson, Carol J. January 1985 (has links)
Call number: LD2668 .T4 1985 S57 / Master of Science
32

A study of the angular momentum content of early-type galaxies

Tshiwawa, Unarine January 2019 (has links)
>Magister Scientiae - MSc
33

Electron orbital angular momentum: preparation, application and measurement

Harvey, Tyler 06 September 2017 (has links)
The electron microscope is an ideal tool to prepare an electron into a specified quantum state, entangle that state with states in a specimen of interest, and measure the electron final state to indirectly gain information about the specimen. There currently exist excellent technologies to prepare both momentum eigenstates (transmission electron microscopy) and position eigenstates (scanning transmission electron microscopy) in a narrow band of energy eigenstates. Similarly, measurement of the momentum and position final states is straightforward with post-specimen lenses and pixelated detectors. Measurement of final energy eigenstates is possible with magnetic electron energy loss spectrometers. In 2010 and 2011, several groups independently showed that it was straightforward to prepare electrons into orbital angular momentum eigenstates. This disseratation represents my contributions to the toolset we have to control these eigenstates: preparation, application (interaction with specimen states), and measurement. My collaborators and I showed that phase diffraction gratings efficiently produce electron orbital angular momentum eigenstates; that control of orbital angular momentum can be used to probe chirality and local magnetic fields; and that there are several routes toward efficient measurement.
34

Generation of millimetre-wavelength orbital angular momentum

Schemmel, Peter January 2015 (has links)
Studying the orbital angular momentum (OAM) of light has become rather fashion- able in the 21st century. Yet, most of major advances in OAM related research have been conducted in the visible regime of light. A significant portion OAM research revolves around using OAM radiation to perform some function that is deemed useful. Examples of this are optical trapping, micro-machine manipulation and the development of advanced communication systems. Photon entanglement measurements also make use of OAM radiation. Interest in probing radiation for naturally generated OAM is far less popular. For example, interest in building OAM sensitive telescopes was sparse at the beginning of this thesis, however the first reported detection of astrophysical OAM was published in 2013. This thesis aims to tackle these two areas of sparse research by developing the components and understanding in order to build OAM sensitive millimetre-wavelength telescopes. Spiral phase plates (SPPs) are the device of choice. The majority of the thesis sets out to test three different SPPs, in order to compare and contrast different methods for their manufacture and design. Electromagnetic theory of OAM and its generation is reviewed first. Then, each SPP is modelled numerically fol- lowed by in-depth modelling of each plate by using the computational electromagnetic package FEKO. Finally, each plate is measured with a three dimensional field scanner developed as part of this thesis. Development of a new modular SPP design concludes this thesis.
35

Buchwald coupling of quinoxaline-o-sulfonates leading to the heterocyclic compounds with potential medicinal properties against TB

Ramakadi, Tselane Geneva January 2018 (has links)
Thesis (M. Sc. (Chemistry)) --University of Limpopo, 2018 / The dissertation describes the use of 2-benzenesulfonyloxyquinoxaline as a good coupling partner for different amine substrates. The palladium-mediated cross- coupling of aryl electrophiles and amines has become a widely used method of constructing arylamine frameworks. The formation of carbon-nitrogen bonds was accomplished via palladium-catalysed Buchwald-Hartwig amination employing different amine substrates to yield substituted quinoxaline-2-amines compounds in good to moderate yields. Buchwald ligands (Xphos, tButylxphos and BrettPhos), were varied with different amine substrates in an attempt of improving the yields. Compounds 81a N-phenylquinoxalin-2-amine and 82b, N-benzylquinoxalin-2-amine were obtained with the yield over 70 % employing Xphos as the ligand. Significant attention has also been given to the application of cross coupling reaction protocols in substrates bearing electron withdrawing substituents. The presence of deactivating groups on the arylamine such as fluoro, nitro and iodo proved to be a challenge as only few compounds were synthesised in moderate yields. Compound 81b, N-(4-fluorophenyl)quinoxalin-2-amine which has electronegative atom attached, showed significant improvement when employing tButyl-Xphos ligand rather than XPhos since the yield improved from 10 % to 71 %. Furthermore, nucleophilic substitution on Buchwald-Hartwig coupled compounds by treating them with alkyl iodides was successful when using methyl and ethyl electrophiles on the N-H group of 81a 2-quinoxalineamine. The synthesised quinoxaline derivatives comprised 7 novel compounds. The in vitro analysis on anti-tubercular screening against H37RvMA strains of Mycobacterium tuberculosis was conducted on 9 compounds. The results revealed none of the compounds to have promising inhibition percentages against Mycobacterium tuberculosis when compared with rifampicin which was used as a positive control. Screening against malaria with chloroquine as the control also did not yield any active compounds.
36

On the Ordering of Energy Levels in Homogeneous Magnetic Fields

rseiring@ap.univie.ac.at 20 November 2000 (has links)
No description available.
37

Incoherent scattering in the ionosphere from twisted radar beams

Waldemarsson, Fredrik January 2011 (has links)
Twenty-odd years ago, scientists managed to produce several new techniques for manipulating certain properties of laser and microwave radiation. These new properties made it possible for the radiation to contain a lot more information than what was previously known. What they had discovered was that light could be twisted, thereby not only carrying polarization, also known as spin angular momentum (SAM) but also orbital angular momentum (OAM).Radar beams are used by scientists to probe the earth’s ionosphere. By measuring the echo of the radar waves one can deduce a lot of information, such as density and temperature of the plasma. In this thesis we will expand an existing program (iscatspb0.m) which computes the spectrum of plasma fluctuations as seen with an incoherent scatter radar, to having it incorporate radar beams carrying OAM, to see what new information of the plasma can be obtained.The three major findings in this thesis were what magnitude of the integer l is needed in order for the contribution of OAM to equal the contribution for the beam opening angle, how much the radar beam opening angle affected the measurements and in what way the spectrum obtained by a twisted beam is affected by different flows
38

Magnetohydrodynamic Turbulence and Angular Momentum Transport in Accretion Disks

Pessah, Martin Elias January 2007 (has links)
It is currently believed that angular momentum transport in accretion disks is mediated by magnetohydrodynamic (MHD) turbulence driven by the magnetorotational instability (MRI). More than 15 years after its discovery, an accretion disk model that incorporates the MRI as the mechanism driving the MHD turbulence is still lacking. This dissertation constitutes the first in a series of steps towards establishing the formalism and methodology needed to move beyond the standard accretion disk model and incorporating the MRI as the mechanism enabling the accretion process. I begin by presenting a local linear stability analysis of a compressible, differentially rotating flow and addressing the evolution of the MRI beyond the weak-field limit when magnetic tension forces due to strong toroidal fields are considered. Then, I derive the first formal analytical proof showing that, during the exponential growth of the instability, the mean total stress produced by correlated MHD fluctuations is positive and leads to a net outward flux of angular momentum. I also show that some characteristics of the MHD stresses that are determined during this initial phase are roughly preserved in the turbulent saturated state observed in local numerical simulations. Motivated by these results, I present the first mean-field MHD model for angular momentum transport driven by the MRI that is able to account for a number of correlations among stresses found in local numerical simulations. I point out the relevance of a new type of correlation that couples the dynamical evolution of the Reynolds and Maxwell stresses and plays a key role in developing and sustaining the MHD turbulence. Finally, I address how the turbulent transport of angular momentum depends on the magnitude of the local shear. I show that turbulent MHD stresses in accretion disks cannot be described in terms of shear-viscosity.
39

Dynamics of Gyroelastic Continua

Hassanpour, Soroosh 05 March 2014 (has links)
This work is concerned with the theoretical development of dynamic equations for gyroelastic systems which are dynamic systems with four basic types of continuous mechanical influences, i.e. inertia, elasticity, damping, and gyricity or stored angular momentum. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing two different theories of elasticity, i.e. the classical and micropolar theories of elasticity, the energy expressions and equations of motion for the undamped classical and micropolar gyroelastic continua are derived. Whereas the micropolar gyroelastic continuum model with extra coefficients and degrees of freedom is primarily developed to account for the asymmetric elasticity, it also proves itself to be more comprehensive in describing the actual gyroscopic system or structure. The dynamic equations of the general three-dimensional gyroelastic continua are reduced to the case of a one-dimensional gyroelastic continua in the three-dimensional space, i.e. three-dimensional gyrobeams. Two different gyrobeam models are developed, one based on the classical beam torsion and bending theories and one based on the simplified micropolar beam torsion and bending theories. Finite element models corresponding to the classical and micropolar gyrobeams are built in MATLAB and used for numerical analysis. The classical and micropolar gyrobeam models are analyzed and compared, against the earlier gyrobeam models developed by other authors and also against each other, through numerical examples. It is shown that there are significant differences between the developed unrestricted classical gyrobeam model and the previously derived zero-order restricted classical gyrobeam models. These differences are more pronounced in the shorter beams and for the transverse gyricity case. The results also indicate that the unrestricted classical and micropolar gyrobeam models behave very diversely in a wide range of micropolar elastic constants even where the classical and micropolar elasticity models coincide. As a foundation for development of the above-mentioned theories, the correct approach for simplification of the micropolar elasticity to the classical elasticity, the simple torsion and bending theories for micropolar beams, and the correct approximation of infinitesimal rotations or microrotations are derived and presented.
40

In-beam gamma-ray spectroscopy of 141Pm and 142Pm

Gilles, Gordon Lewis. January 1981 (has links)
No description available.

Page generated in 0.0869 seconds