• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 39
  • 36
  • 26
  • 24
  • 19
  • 18
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 94
  • 70
  • 52
  • 43
  • 36
  • 33
  • 32
  • 32
  • 28
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Evaluation of 1,1-Dimethyl-5,7-Di-T-Butylspiro[2.5]Octa-4,7-Dien-6-One as a Mechanistic Probe for Single Electron Transfer

Gillmore, Jason G. Jr. 15 July 1998 (has links)
Single electron transfer (SET) mechanisms are becoming ubiquitous in modern organic chemistry. However, it is often difficult to distinguish SET mechanisms from polar mechanisms. Kinetics, products and product distributions, and response to perturbation in solvent and substituents are often identical between the two mechanisms. Detection techniques such as EPR, CIDNP, and UV absorption can often detect "blind" pathways and thus cannot provide unambiguous evidence regarding the true mechanism of interest. In recent years mechanistic probes have been developed which can test for single electron transfer in the mechanism of interest in a more unambiguous manner, although a given probe is often applicable to a narrower range of reactions. In this work 1,1-dimethyl-5,7-di-t-butylspiro[2.5]octa-4,7-dien-6-one (6) is presented as a new "hypersensitive" probe for single electron transfer to conjugated carbonyl compounds. This new probe functions in a rather unique fashion, allowing interpretation of the mechanism at work on the basis of the regiochemistry of spirocyclic ring opening. This "regiodifferentiation" based probe was studied with a variety of nucleophiles (particularly Grignard reagents) and has been found to be effective in differentiating SET from polar processes, although surprising results indicative of polar pathways in the case of reaction of 6 with Grignard reagents other than methyl Grignard were found. Additional insight into the mechanism of the reaction of Grignard reagents with conjugated ketones is also presented. / Master of Science
52

The spectroscopic analysis of di-copper helicates as receptors for encapsulating anions : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University, Palmerston North, New Zealand

Knapp, Quintin Wayne January 2009 (has links)
The application of neutral dicopper helicates to the encapsulation of a number of anions was investigated. Two dicopper salen derived helicates were studied which contained phenolic and either iminophenyl (1) or oxime (2) donor groups. UV-visible spectroscopy was used to determine the binding stoichiometry and formation constants of the anion complexes. Complex binding was supported by electrospray ionisation mass spectrometry. Receptor 1 possessed a remarkable selectivity for sulfate in isopropanol (IPA) for which a log K value of 5.07 ± 0.24 was obtained. Receptor 2 bound all anions studied more strongly than 1. Crystal structural data supports the proposition that there is a steric barrier to contraction of 1 from the bulky iminophenyl groups. Receptor 2 was not restricted by the small oxime moieties allowing for optimum copper-anion interactions.
53

Understanding the Effect of Cation and Solvation on the Structure and Reactivity of Nitrile Anions

Ziegler, Michael 09 December 2011 (has links)
This Ph.D. dissertation is focused on the investigation the structure of nitrile anion containing molecules and how the structure and reactivity of those molecules are affected by solvation and counter ion. A systematic approach was employed in this investigation, beginning with an evaluation of the accuracy of three commonly used model chemistries (Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP), all paired with the 6-31+G(d) basis set). A series of complexes of various cations with a number of explicit molecules of tetrahydrofuran (THF) and dimethyl ether (DME) were studied with these model chemistries and the results were compared, where possible, with experimental results. From this work, it was determined that the B3LYP models gave the most accurate results for the complexes in question. This work was then extended to acetonitrile anion containing complexes of solvent and cation. Based on the results of that extension, it was determined that cation size and charge density on the cation were critical factors in determining the structure of the acetonitrile anion molecule and in determining if the anion was metalated at the nitrogen or alpha-carbon position, with larger cations favoring carbon metalation and more significant deformation of the alpha-carbon from the expected sp2 hybridization. The final aspect of this dissertation was the determination of reaction coordinate energy profiles for a pair of substitution reactions involving nitrile anion containing cycloaliphatic molecules. The results of this study showed that, due to steric and kinetic factors, the axial products and transitions states associated with these reactions were favored, and that the degree of preference was kinetically controlled. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
54

Bile Acid Derived Adaptive Dendrons And Anion Receptors

Ghosh, Sanjib 12 1900 (has links)
Chapter 1. Bile acid derived adaptive dendrons Bile acids are naturally occurring rigid, chiral molecules with unique facial amphiphilicity making it an attractive build block for designing supramolecular systems. Synthesis of bile acid derived chiral dendrimers with acetates protecting the peripheral hydroxyl groups has already been reported by our group (Figure 1). These dendrons did not survive an attempted deprotection of the acetates, as the dendritic linkages were ester linkages. To keep the facial amphiphilicity of bile acid fragments intact, we have worked on two different synthetic strategies. Bile acid derived dendritic components having chloroacetate functional group were synthesized and the α-halo ketone was reacted with a bile acid carboxylate to generate a dendritic species with free hydroxyl group having a glyocolate spacer (Figure 2). At the same time we also were able to protect bile acid hydroxyl group as its corresponding benzyl ether and after dendron synthesis, benzyl groups were removed by hydrogenolysis to give bile acid derived dendritic components with free hydroxyl groups and simple ester linkages (Figure 2). Dye solubilization ability of these dendrons was tested. We observed that some of these structures had the ability to solubilize both a polar dye in a nonpolar solvent and/or a nonpolar dye in a polar solvent. We carried out different extraction techniques (liquid-liquid, solid-liquid) and transport experiments to establish that these dendrons can act as both as normal and inverse micellar mimics. Depending upon the polarity of the medium, this dendron (Figure 2, right) can adopt different conformation and hence this is described as an “adaptive dendron” (Figure 3). Chapter 2. Bile acid derived anion receptors We discovered that the self-condensation of 3α-chloroacetyloxy cholic acid produced a “cholaphane” with free hydroxyl groups in just two step from naturally occurring bile acid. This cyclic dimer (Figure 4) is an inside-out cyclodextrin analog having a polar interior and nonpolar outer surface. The structure of this molecule was confirmed by X-ray crystallography (Figure 5). This molecule showed a remarkable ability to bind two fluoride ions in its cavity (K1 = 1900 M-1 and K2 = 250 M-1 in CHCl3). The pair of doublets from the glycolate methylene hydrogen spacers were found to collapse to a singlet and they again reappear as a pair of doublets with increase in the concentration of fluoride. This anomalous behaviour of gylcolate methylene spacers were rationalized by MP2 calculation at the 6-31+G* level which showed that upon interaction with fluoride, electron density on C-H hydrogen decreased while that on the other geminal hydrogen increased. Detailed NMR study and interaction of fluoride with different acyclic compounds enabled us to determine the mode of fluoride binding. Based on the NMR data and calculation results, fluoride binding models were proposed involving O-H…F- and C-H…F- interactions. When the binding affinity of cyclic dimer was examined for other anions, this molecule showed weak affinity to chloride ions (K ~ 100 M-1) whereas for other bigger anion (HSO4-, H2PO4-) it showed no binding. Similar interactions were utilized to generate bile acid based tripodal geometry where those receptors were able to bind anions weakly (K ~ 100-200 M-1 for fluoride, chloride and bisulphate).
55

Synthesis And Reactions Of Alpha-keto-beta-hydroxyphosphonates

Baris, Sehriban 01 February 2007 (has links) (PDF)
This thesis presents synthesis and different reactions of alpha-keto-beta-hydroxyphosphonates. Toward this aim, the hydroxyl functionality of alpha-hydroxycarboxylic acids were protected with alkyl or acyl groups and then formation of acid chloride followed by the reaction with trialkylphosphite furnished protected alpha-keto-beta-hydroxyphosponates. Nucleophilic addition reactions were applied to these compounds to obtain quaternary alcohols with phosphonate functionality. The addition reactions were tried with organocatalysts for the enantioselective formation of desired products.
56

Synthesis and anion binding studies of pyrazole and biimidazole-containing receptors

Rubin, Bobbi Linden 01 February 2011 (has links)
This dissertation covers two different topics within the area of diaza-containing aromatic five-membered rings: biimidazoles and pyrazoles. With the exception that both these subject matters are explored in the context of developing new anion binding agents, the background and research associated with these two topics are vastly different and will be treated as such. Chapter two, dealing with biimidazoles, focuses solely on expanded porphyrins, while chapter three discusses pyrazoles as potential macrocyclic building blocks and as diamidic-functionalized anion binders. The first chapter covers several different topics in order to put into perspective the diverse subject matter presented in this dissertation. It begins with an overview of some well-known expanded porphyrins. The synthesis, classical applications, and newer studies of the biimidazole synthetic efforts are then described. The third part of the introductory chapter covers the synthesis and applications of pyrazoles. The use of heterocycles with more than one heteroatom in the construction of expanded porphyrins is just beginning to be explored, and is the focus of chapter two. The synthesis of a novel expanded porphyrin is described and its applications are investigated. More specifically, chapter two covers the synthesis of several biimidazole dialdehydes and their condensation with three 3,3',4,4'-functionalized bis-[alpha]-free bipyrroles to form a series of novel macrocycles. The characterization of these new compounds has been investigated and is discussed in detail. Also presented are preliminary studies of their anion binding properties. Pyrazoles, the subject of chapter three, are another overlooked class of potential building blocks in the area of expanded porphyrins and molecular recognition chemistry. Pyrazoles have rarely been reported in the literature as being part of a larger molecular framework. Until this work, their anion binding potential had remained unexplored. Thus, the attempted incorporation of a pyrazole fragment into an expanded porphyrin framework is described. Second, and more significantly, the design, synthesis, and anion binding properties of a new series of diamidic pyrazoles are reported. / text
57

Electron Transfer and Other Reactions Using Atomic Metal Anions

Butson, Jeffery M. 04 February 2014 (has links)
The atomic metal anions Rb-, Cs-, Cu-, Ag- and Fe- have been generated in the gas phase and reacted with various neutral reactants in a triple quadrupole mass spectrometer. The metal anions were formed via electrospray ionization of the metal-oxalate solutions and form in gas phase between the capillary and the first quadrupole. Neutral gas phase reactants investigated include NO, NO2, SO2, C6F5OH, C6F5NH2, C6F6, E-octafluoro-butene and 1,2,3/1,2,4/1,3,5 trifluoro-benzene. When possible, CBS-4M methods were used to suggest the lowest energy products based on relative energy. Observed reactions of atomic metal anions with the aforementioned neutral species include electron transfer and dissociative electron transfer to the neutral gas phase reactants. In addition, hydrogen abstraction and fluorine abstraction forming a neutral metal hydride or fluoride as well as the formation of multiply substituted metal-oxide/fluoride anions was also observed. Metal-complex anions observed from the gas phase reactions include CuF-,CuF2-,CuO-,CuO2-, FeO-, FeO2-, FeO3-, FeF-, FeF2-, FeF3-, CsF- and CsF2-.
58

Einfluss des extrazellulären pH-Werts auf den Transport von para-Aminohippurat über den organischen Anionentransporter 1 / Influence of the extracellular pH on the transport of para-aminohippurate via organic anion transporter 1

Engelke, Christian 16 February 2015 (has links)
No description available.
59

Electron Transfer and Other Reactions Using Atomic Metal Anions

Butson, Jeffery M. January 2014 (has links)
The atomic metal anions Rb-, Cs-, Cu-, Ag- and Fe- have been generated in the gas phase and reacted with various neutral reactants in a triple quadrupole mass spectrometer. The metal anions were formed via electrospray ionization of the metal-oxalate solutions and form in gas phase between the capillary and the first quadrupole. Neutral gas phase reactants investigated include NO, NO2, SO2, C6F5OH, C6F5NH2, C6F6, E-octafluoro-butene and 1,2,3/1,2,4/1,3,5 trifluoro-benzene. When possible, CBS-4M methods were used to suggest the lowest energy products based on relative energy. Observed reactions of atomic metal anions with the aforementioned neutral species include electron transfer and dissociative electron transfer to the neutral gas phase reactants. In addition, hydrogen abstraction and fluorine abstraction forming a neutral metal hydride or fluoride as well as the formation of multiply substituted metal-oxide/fluoride anions was also observed. Metal-complex anions observed from the gas phase reactions include CuF-,CuF2-,CuO-,CuO2-, FeO-, FeO2-, FeO3-, FeF-, FeF2-, FeF3-, CsF- and CsF2-.
60

Photo-décomposition de l'acide formique et exploitation de la réactivité des anions phosphorés en chimie radicalaire / Formic acid decomposition and utilization of the phosphorus anions reactivity in radical chemistry

Eschlimann, Alain 13 December 2018 (has links)
Les recherches présentées dans ce manuscrit s’articulent autour de deux parties distinctes. La première partie concerne une étude mécanistique de la réaction de décomposition de l’acide formique (AF) photocatalysé par le Tetra-n-ButylAmmonium DecaTungstate (TBADT) et explore la réactivité de ce photocatalyseur envers l’AF. La deuxième partie de ces travaux se focalise sur l’étude de la réactivité radicalaire d’anions phosphorés et de leurs analogues chalcogénés. Dans un premier temps, nous nous sommes intéressés à exploiter la réactivité de phosphures-borane et des anions d’oxydes de phosphine pour la formation de liaisons C-P par photo-induction dans le visible. Dans un second temps, nous avons exploré la réactivité radicalaire et ionique des phosphures-borane chalcogénés, par une étude de leur structure et de leur réactivité. Ces propriétés ont été mises en application dans le cadre de réactions de photo-polymérisation radicalaire et de réduction de composés électrophiles. / This dissertation is organized in two distinct parts. The first one is a mechanistic investigation of the photocatalyzed reaction of decomposition of formic acid (AF) under mild conditions using Tetra-n-ButylAmmonium DecaTungstate (TBADT). The second part of this work revolve around the use and study of the radical reactivity of phosphorous anions and their chalcogenated analogues. Firstly, we used the radical reactivity of phosphido-borane and phosphine oxide anions for the formation of C-P bonds. In a last part, we explored the radical and ionic reactivity of chalcogenated phosphido-borane, by studying their structure and reactivity. These properties has been applied to radical photo-polymerization reactions and for the reduction of electrophiles.

Page generated in 0.0476 seconds