• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 461
  • 121
  • 57
  • 49
  • 36
  • 23
  • 23
  • 11
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 965
  • 423
  • 135
  • 89
  • 74
  • 72
  • 71
  • 68
  • 66
  • 58
  • 57
  • 55
  • 53
  • 50
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

High interaction parameter block copolymers for advanced lithography

Cushen, Julia Dianne 24 February 2015 (has links)
Block copolymers demonstrate potential in next-generation lithography as a solution for overcoming the limitations of conventional lithographic techniques. Ideal block copolymer materials for this application can be synthesized on a commercial scale, have high [chi]-parameters promoting self-assembly into sub-20 nm pitch domains, have controllable alignment and orientation, and have high etch contrast between the domains for facilitating pattern transfer into the underlying substrate. Block copolymers that contain silicon in one domain are attractive for nanopatterning since they often fulfill at least three of these requirements. However, silicon-containing materials are notoriously difficult to orient in thin films due to the low surface energy of the silicon-containing block, which typically wets the free surface interface. In this work, the methodology behind material choice and the synthesis of new silicon-containing block copolymers by a variety of polymerization techniques will be described. Thin film self-assembly of the block copolymers with domains oriented perpendicular to the plane of the substrate is achieved using different solvent annealing and neutral surface treatments with thermal annealing conditions. Block copolymer patterns are transferred to the underlying substrate by reactive ion etching and directed self-assembly of the polymers is demonstrated using chemical contrast patterns. Interesting thermodynamics governing the self-assembly of block copolymers with solvent annealing will also be discussed. Finally, new amphiphilic block copolymers will be described that were created with lithographic applications in mind but that are most useful for biological applications in drug delivery. / text
382

Solid-state production of single-crystal aluminum and aluminum-magnesium alloys

Pedrazas, Nicholas Alan 23 December 2010 (has links)
Three sheet materials, including high purity aluminum, commercial purity aluminum, and an aluminum-magnesium alloy with 3 wt% magnesium, were produced into single-crystals in the solid-state. The method, developed in 1939 by T. Fujiwara at Hiroshima University, involves straining a fully recrystallized material then passing it into a furnace with a high temperature gradient at a specific rate. This method preserves composition and particulate distributions that melt-solidification methods do not. Large single crystals were measured for their orientation preferences and growth rates. The single-crystals were found to preferably orient their growth direction to the <120> to <110> directions, and <100> to <111> directions normal to the specimen surface. The grain boundary mobility of each material was found to be a function of impurity content. The mobility constants observed were similar to those reported in the literature, indicating that this method of crystal growth provides an estimate of grain boundary mobility. This is the first study the effect of impurities and alloying to this single-crystal production process, and to show this method’s applicability in determining grain boundary mobility information. / text
383

The effects of processing conditions on static abnormal grain growth in Al-Mg alloy AA5182

Carpenter, Alexander James 17 June 2011 (has links)
Static abnormal grain growth (SAGG) was studied in Al-Mg alloy AA5182 sheet by varying four processing parameters: deformation temperature, strain rate, annealing temperature, and annealing time. SAGG is a secondary recrystallization process related to geometric dynamic recrystallization (GDRX) and requires both deformation at elevated temperature and subsequent static annealing. A minimum temperature is required for both SAGG and GDRX. Recrystallized grains only develop at strains larger than the critical strain for SAGG, [epsilon]SAGG. The size of the recrystallized grains is inversely related to and controlled by the density of SAGG nuclei, which increases as local strain increases. The results of this study suggest that SAGG is controlled by two thermally-activated mechanisms, dynamic recovery and recrystallization. During deformation, dynamic recovery increases as deformation temperature increases or strain rate decreases, increasing the critical strain for SAGG. SAGG is subject to an incubation time that decreases as annealing temperature increases. SAGG can produce grains large enough to reduce yield strength by 20 to 50 percent. The results of this study suggest strategies for avoiding SAGG during hot-metal forming operations by varying processing conditions to increase [epsilon]SAGG. / text
384

Pre-injection reservoir evaluation at Dickman Field, Kansas

Phan, Son Dang Thai 04 October 2011 (has links)
I present results from quantitative evaluation of the capability of hosting and trapping CO₂ of a carbonate brine reservoir from Dickman Field, Kansas. The analysis includes estimation of some reservoir parameters such as porosity and permeability of this formation using pre-stack seismic inversion followed by simulating flow of injected CO₂ using a simple injection technique. Liner et at (2009) carried out a feasibility study to seismically monitor CO₂ sequestration at Dickman Field. Their approach is based on examining changes of seismic amplitudes at different production time intervals to show the effects of injected gas within the host formation. They employ Gassmann's fluid substitution model to calculate the required parameters for the seismic amplitude estimation. In contrast, I employ pre-stack seismic inversion to successfully estimate some important reservoir parameters (P- impedance, S- impedance and density), which can be related to the changes in subsurface rocks due to injected gas. These are then used to estimate reservoir porosity using multi-attribute analysis. The estimated porosity falls within a reported range of 8-25%, with an average of 19%. The permeability is obtained from porosity assuming a simple mathematical relationship between porosity and permeability and classifying the rocks into different classes by using Winland R35 rock classification method. I finally perform flow simulation for a simple injection technique that involves direct injection of CO₂ gas into the target formation within a small region of Dickman Field. The simulator takes into account three trapping mechanisms: residual trapping, solubility trapping and mineral trapping. The flow simulation predicts unnoticeable changes in porosity and permeability values of the target formation. The injected gas is predicted to migrate upward quickly, while it migrates slowly in lateral directions. A large amount of gas is concentrated around the injection well bore. Thus my flow simulation results suggest low trapping capability of the original target formation unless a more advanced injection technique is employed. My results suggest further that a formation below our original target reservoir, with high and continuously distributed porosity, is perhaps a better candidate for CO₂ storage. / text
385

Modeling Anaerobic Muscle Metabolism

Maksai, Tibor January 2008 (has links)
Is it possible for a minimal model of anaerobic muscle contraction to describe measured data? There have been many models trying to describe separate parts of the human body with various results. In this thesis a model has been created to describe all the essential biochemical reactions of anaerobic muscle metabolism during contraction but with as few states and parameters as possible. A toolbox in Matlab was used for simulation and also for parameter estimation. The best model eventually got validated to see statistically how well it can describe the measured data. During the simulations an unnecessary assumption got revealed which helped us to understand the system better. The vision of a whole-body model may not be so far into the future as many think and the first step is to understand smaller biochemical systems like muscle contraction.
386

Why be normal? : single crystal growth and X-ray spectroscopy reveal the startlingly unremarkable electronic structure of Tl-2201

Peets, Darren 11 1900 (has links)
High-quality platelet single crystals of Tl₂Ba₂CuO₆±δ (Tl-2201) have been grown using a novel time-varying encapsulation scheme, minimizing the thallium oxide loss that has plagued other attempts and reducing cation substitution. This encapsulation scheme allows the melt to be decanted from the crystals, a step previously impossible, and the remaining cation substitution is homogenized via a high-temperature anneal. Oxygen annealing schemes were developed to produce sharp superconducting transitions from 5 to 85 K without damaging the crystals. The crystals' high homogeneity and high degree of crystalline perfection are further evidenced by narrow rocking curves; the crystals are comparable to YSZ-grown YBa₂Cu₃O₆₊δ by both metrics. Electron probe microanalysis (EPMA) ascertained the crystals' composition to be Tl₁.₉₂₀₍₂₎Ba₁.₉₆₍₂₎Cu₁.₀₈₀₍₂₎O₆₊δ; X-ray diffraction found the composition of a Tc = 75 K crystal to be Tl₁.₉₁₄₍₁₄₎Ba₂Cu₁.₀₈₆₍₁₄₎O₆.₀₇₍₅₎, in excellent agreement. X-ray refinement of the crystal structure found the crystals orthorhombic at most dopings, and their structure to be in general agreement with previous powder data. Cation-substituted Tl-2201 can be orthorhombic, orthorhombic crystals can be prepared, and these superconduct, all new results. X-ray diffraction also found evidence of an as yet unidentified commensurate superlattice modulation. The Tl-2201 crystals' electronic structure were studied by X-ray absorption and emission spectroscopies (XAS/XES). The Zhang-Rice singlet band gains less intensity on overdoping than expected, suggesting a breakdown of the Zhang-Rice singlet approximation, and one thallium oxide band does not disperse as expected. The spectra correspond very closely with LDA band structure calculations, and do not exhibit the upper Hubbard bands arising from strong correlations seen in other cuprates. The spectra are noteworthy for their unprecedented (in the high-Tc cuprates) simplicity. The startling degree to which the electronic structure can be explained bodes well for future research in the cuprates. The overdoped cuprates, and Tl-2201 in particular, may offer a unique opportunity for understanding in an otherwise highly confusing family of materials.
387

Experimental Analysis and Computational Modeling of Annealing in AA6xxx Alloys

Sepehrband, Panthea January 2010 (has links)
Microstructural evolution in a naturally-aged and cold-rolled AA6451 aluminum alloy during a non-isothermal annealing process, which leads to significant grain refinement, is investigated through: (a) conducting a comprehensive experimental analysis and (b) developing a computational modeling technique. The underlying mechanisms of annealing have been investigated through analysing interactive phenomena between precipitation and concurrent recovery and recrystallization. It is shown that the interactions between solute elements, clusters, and fine precipitates with dislocations restrict dynamic and static recovery during deformation and subsequent annealing. Inhibition of recovery favours recrystallization that initiates at 300oC and progresses through a nucleation and growth mechanism. Despite localized inhomogeneities, nucleation mainly occurs in non-recovered high energy sites which are uniformly distributed within the entire structure. Growth of the recrystallized nuclei is restricted by pinning precipitates that undergo a concurrent coarsening process. The fine, uniform distribution of recrystallized nuclei and their limited growth result in the formation of a fine-grained microstructure, after completion of recrystallization. The acquired knowledge has been used to develop a computational modeling technique for simulating microstructural evolution of the alloy. Microstructural states are simulated by integrating analytical approaches in a Monte Carlo algorithm. The effects of deformation-induced and pre-existing inhomogeneities, as well as precipitate coarsening and grain boundary pinning on the competitive recovery-recrystallization process are included in the simulation algorithm. The developed technique is implemented to predict the microstructural evolution during isothermal and non-isothermal annealing of AA6xxx sheets. A good quantitative agreement is found between the model predictions and the results from the experimental investigations.
388

Electrodeposition of iron-cobalt alloys from a dibasic ammonium citrate stabilized plating solution

Crozier, Brendan Matthew Unknown Date
No description available.
389

Synthesis and properties of nanoparticulate titanium dioxide compounds

Motlalepula Isaac Buthelezi January 2009 (has links)
<p>An electrolytic cell was designed and constructed for the preparation of TiO2 nanotubes. Conditions of anodic oxidation were established to reproducibly prepare TiO2 nanotubes of average length 35-50 &mu / m vertically orientated relative to the plain of a pure titanium metal sheet. A non-aqueous solution of ethylene glycol containing small percentage of ammonium fluoride was used as the electrolyte with an applied voltage of 60 V. The morphology and dimensions of the nanotube arrays were studied by scanning (SEM) and transmission (TEM) electron microscopy. The effect of calcination under different conditions of temperature and atmosphere (nitrogen, argon and air) were assessed by both X-ray diffraction (XRD) and cyclic voltammetry (CV). Cyclic voltammetry studies were made possible by construction of a specially designed titanium electrode upon which the nanotubes were prepared. CV studies established a positive correlation between crystallinity and conductivity of the nanotubes. Doping of the nanotubes with nitrogen and carbon was established by elemental analysis, X-ray photoelectron spectroscopy (XPS) and Rutherford back scattering (RBS). The effect of nonmetal doping on the band gap of the TiO2 nanotubes was investigated by diffuse reflectance spectroscopy (DRS).</p>
390

Thermal annealing and superconductivity in Zr based metallic glasses

Marshall, Gillian E. January 1986 (has links)
No description available.

Page generated in 0.0968 seconds