• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 16
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An investigation of the deformation of anodic aluminium oxide nano-honeycomb during nanoindentation

Ng, King-yeung., 吳競洋. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
22

Synthesis and properties of nanoparticulate titanium dioxide compounds

Motlalepula Isaac Buthelezi January 2009 (has links)
<p>An electrolytic cell was designed and constructed for the preparation of TiO2 nanotubes. Conditions of anodic oxidation were established to reproducibly prepare TiO2 nanotubes of average length 35-50 &mu / m vertically orientated relative to the plain of a pure titanium metal sheet. A non-aqueous solution of ethylene glycol containing small percentage of ammonium fluoride was used as the electrolyte with an applied voltage of 60 V. The morphology and dimensions of the nanotube arrays were studied by scanning (SEM) and transmission (TEM) electron microscopy. The effect of calcination under different conditions of temperature and atmosphere (nitrogen, argon and air) were assessed by both X-ray diffraction (XRD) and cyclic voltammetry (CV). Cyclic voltammetry studies were made possible by construction of a specially designed titanium electrode upon which the nanotubes were prepared. CV studies established a positive correlation between crystallinity and conductivity of the nanotubes. Doping of the nanotubes with nitrogen and carbon was established by elemental analysis, X-ray photoelectron spectroscopy (XPS) and Rutherford back scattering (RBS). The effect of nonmetal doping on the band gap of the TiO2 nanotubes was investigated by diffuse reflectance spectroscopy (DRS).</p>
23

Electrochemical investigation of the growth of anodic films on iron and ferrous alloys.

Graham, Fiona Jane. January 1994 (has links)
An electrochemical investigation of the corrosion of iron and Fe18Cr based stainless steel alloys was undertaken with particular emphasis on the nucleation and growth of surface films. Chronoamperometry was shown to be a sensitive technique to investigate the initial stages of film formation and growth. In a variety of acidic (pH < 7), alkaline and alkaline cyanide electrolytes, providing dissolution of the substrate metal could occur rising current transients, similar to those reported in electrocrystallisation studies, were observed when the electrode was stepped to the appropriate potential. This indicated that at these potentials the surface film formed via the nucleation and growth of discrete nuclei. A significant aspect of this study was visual evidence of this nucleation and subsequent growth of the film provided by scanning electron microscopy which supported the electrochemical data and interpretation thereof. Existing electrocrystallisation models were used to evaluate the experimental rising current transients. While these models gave an indication as to the prevailing nucleation and growth mechanism, they were found to be inadequate in describing anodic oxide formation on an oxidising substrate. A qualitative model was proposed. In acidic electrolytes, rising chronoamperometric transients were observed for Fe, Cr and Fe18Cr at passive potentials and for FexCr (x = 16,18, 20,23% Cr) and alloys 444, 4732, 4733, 304L and 316L at transpassive potentials. The transients were shown to be sensitive to variations of potential, temperature, electrolyte and alloy composition. A systematic investigation of the influence of temperature (20 0 C - 1200 C) on the chronoamperometric, cyclic voltammetric and rotating ring - disc electrode behaviour of Fe in O.5M and 1.0M NaOH was also undertaken. In alkaline electrolytes, the formation of a duplex surface film was proposed, with x-ray photoelectron spectroscopy indicating that the protective base layer consisted of FeO while Fez03 and FeOOH constituted the upper layer. Base layer formation was favoured with increasing temperature and increasing hydroxide ion concentration of the electrolyte. Addition of OAM NaCN to O.5M and 1.0M NaOH had a marked effect on the electrochemistry of the system, with CN- inhibiting surface film formation, particularly of the upper layer. A mechanism for the oxidation of Fe in alkaline and alkaline cyanide electrolytes was proposed. / Thesis (Ph.D.)-University of Natal, 1994.
24

Modificação da superfície da liga experimental Ti10Mo8Nb empregando oxidação anódica: estudos in vitro / Surface modification of the esperimental alloy Ti10Mo8Nb employing anodic oxidation: in vitro studies

Carobolante, João Pedro Aquiles [UNESP] 22 February 2017 (has links)
Submitted by João Pedro Aquiles Carobolante null (pedroacarobolante@gmail.com) on 2017-04-03T20:14:27Z No. of bitstreams: 1 Carobolante, J. P. A. - Dissertação.pdf: 4630427 bytes, checksum: a120cbf02bdf37df43d8f9878ea6e209 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-11T20:41:33Z (GMT) No. of bitstreams: 1 carobolante_jpa_me_guara.pdf: 4630427 bytes, checksum: a120cbf02bdf37df43d8f9878ea6e209 (MD5) / Made available in DSpace on 2017-04-11T20:41:33Z (GMT). No. of bitstreams: 1 carobolante_jpa_me_guara.pdf: 4630427 bytes, checksum: a120cbf02bdf37df43d8f9878ea6e209 (MD5) Previous issue date: 2017-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Titânio e suas ligas são amplamente empregados em aplicações biomédicas, devido a sua biocompatibilidade e excelentes propriedades de volume, como resistência mecânica. As ligas de titânio tipo β com baixo módulo de elasticidade, como Ti10Mo8Nb, são indicadas para amenizar o efeito “stress shielding”, característico da interface implante/osso. No entanto, quando materiais bioinertes são inseridos no corpo humano não induzirão uma resposta específica. As técnicas de modificação de superfície, como crescimento de nanoestruturas de TiO2, são utilizadas para alterar as propriedades de superfície desses materiais permitindo melhor resposta. O objetivo dessa pesquisa é a modificação de superfície da liga experimental Ti10Mo8Nb a partir do crescimento de nanoestruturas de TiO2. Os lingotes da liga experimental Ti10Mo8Nb foram obtidos a partir da fusão dos metais puros em forno a arco voltaico. A oxidação anódica potenciostática foi realizada utilizando um eletrólito formado por glicerina e H2O (1:1, em vol.) com adição de 2,7 % (m/v) de NH4F sob 20 V durante 3 h, a temperatura ambiente. Após o tratamento as amostras foram calcinadas. A superfície da liga foi analisada por microscopia eletrônica de varredura (MEV), difração de raios X (DRX), ângulo de contato, medidas da energia de superfície, espectroscopia de raios X por dispersão em energia (XPS). Estudos in vitro, como adesão celular e bacteriana, foram realizados para avaliar a resposta desse tratamento. A liga Ti10Mo8Nb apresentou fase beta após o processamento, além de diminuição da temperatura β-transus. Após o tratamento de superfície se obteve uma camada nanoporosa de TiO2. As análises in vitro apresentaram viabilidade do crescimento celular e diminuição da proliferação bacteriana. / Titanium and its alloys have been widely used as biomedical material due their biocompatibility and excellent bulk properties, such as mechanical strength. β titanium alloys with low modulus of elasticity, such as Ti10Mo8Nb, are suitable to relieve the stress shielding effect that occurs in the interface implant/bone. However, when these materials are inserted inside human body the surface properties will not induce a specific response. Surface modifications techniques can be used for change the inert surface of these alloys, e.g. TiO2 nanostructure growth by using anodic oxidation. The purpose of this research is the surface modification of Ti10Mo8Nb experimental alloy by using TiO2 nanostruture growth. Ingots of Ti10Mo8Nb experimental alloy were produced by fusion from sheets of molybdenum, niobium and titanium commercially pure in arc melting furnace under argon atmosphere. The potentiostatic anodic oxidation was performed using an electrolyte formed of glycerol and H2O (1: 1 by vol.) with addition of 2.7% (w/v) NH4F under 20 V for 3 h at room temperature. After the surface treatment, the samples were annealing. The surface of the alloy was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), contact angle, surface energy measurements, energy dispersive X-ray spectroscopy (XPS). In vitro studies, such as cell and bacterial adhesion, were performed to evaluate the response of this treatment. The Ti10Mo8Nb alloy exhibited beta phase after the processing, and also occurred a decrease in β-transus temperature. After the surface treatment a nanoporous layer of TiO was obtained. The anatase phase was found in the annealed samples (450 °C for 3 hours). In vitro analyzes showed cell growth viability and decreased bacterial proliferation due to larget specific surface area.
25

Synthesis and properties of nanoparticulate titanium dioxide compounds

Buthelezi, Motlalepula Isaac January 2009 (has links)
Magister Scientiae - MSc / An electrolytic cell was designed and constructed for the preparation of TiO2 nanotubes. Conditions of anodic oxidation were established to reproducibly prepare TiO2 nanotubes of average length 35-50 μm vertically orientated relative to the plain of a pure titanium metal sheet. A non-aqueous solution of ethylene glycol containing small percentage of ammonium fluoride was used as the electrolyte with an applied voltage of 60 V. The morphology and dimensions of the nanotube arrays were studied by scanning (SEM) and transmission (TEM) electron microscopy. The effect of calcination under different conditions of temperature and atmosphere (nitrogen, argon and air) were assessed by both X-ray diffraction (XRD) and cyclic voltammetry (CV). Cyclic voltammetry studies were made possible by construction of a specially designed titanium electrode upon which the nanotubes were prepared. CV studies established a positive correlation between crystallinity and conductivity of the nanotubes. Doping of the nanotubes with nitrogen and carbon was established by elemental analysis, X-ray photoelectron spectroscopy (XPS) and Rutherford back scattering (RBS). The effect of nonmetal doping on the band gap of the TiO2 nanotubes was investigated by diffuse reflectance spectroscopy (DRS). / South Africa
26

Nanostrukturované vrstvy polovodivých oxidů kovů v plynových senzorech / Nanostructured layers of semiconducting metal oxides in gas sensors

Bartoš, Dušan January 2014 (has links)
This diploma thesis discusses the gas sensor preparation via anodic oxidation. It names sensor types, deals with the sensing principle of electrochemical sensors in detail and submits sensor parameters. It describes preparation technology and characterization technology methods. In the experimental part, it focuses on both the measurement methodology and the electrochemical oxygen sensor covered with titanium dioxide nanocolumns fabrication. Not the least it discusses acquired research results.
27

Nanostrukturované vrstvy polovodivých oxidů kovů v plynových senzorech / Nanostructured layers of semiconducting metal oxides in gas sensors

Bartoš, Dušan January 2014 (has links)
This diploma thesis discusses the gas sensor preparation via anodic oxidation. It names sensor types, deals with the sensing principle of electrochemical sensors in detail and submits sensor parameters. It describes preparation technology and characterization technology methods. In the experimental part, it focuses on both the measurement methodology and the electrochemical oxygen sensor covered with titanium dioxide nanocolumns fabrication. Not the least it discusses acquired research results.
28

Studium chování buněk na nanostrukturovaných TiO2 površích / Nanostructured TiO2 as the surface for the investigation of cell behaviour

Poláková, Kateřina January 2016 (has links)
This thesis deals with the study of cells on nanostructured surfaces of titanium dioxide, which are produced by the electrochemical method called anodic oxidation. The theoretical part is formed by an overview of manufacturing nanostructured surfaces using anodic oxidation method. It mentions the influence of external factors on the geometric parameters of the structure and description of methods of characterization structures. Furthermore there is processed outline of use for biomedical application and the description of interaction of the cell with surface. The practical part includes description of the production of nanoporous and nano-tubular structures made on thin films of titanium by direct method of anodic oxidation on which was studied the influence of external factors. Described a procedure and production of nanorods structures and nanodots generated using alumina template (AAO) which is subsequently carried out the study of the behavior of cells, which includes tests of adhesion, examination of morphology of cells, assays of proliferation and differentiation. Structures are under investigation of the interaction of cells with the nanostructured layer compared with the smooth surface of the titanium dioxide.
29

The Chemistry of Cyclopropylarene Radical Cations

Wang, Yonghui 02 June 1997 (has links)
Cyclopropane derivatives are frequently utilized as "probes" for radical cation intermediates in a number of important chemical and biochemical oxidation. The implicit assumption in such studies is that if a radical cation is produced, it will undergo ring opening. Through a detailed examination of follow-up chemistry of electrochemically and chemically generated cyclopropylarene radical cations, we have shown that the assumption made in the use of these substrates as SET probes is not necessarily valid. While cyclopropylbenzene radical cation undergoes rapid methanol-induced ring opening (e.g., k = 8.9⁷ s⁻¹M⁻¹), the radical cations generated from 9-cyclopropylanthracenes do not undergo cyclopropane ring opening at all. The radical cations generated from cyclopropylnaphthalenes disproportionate or dimerize before undergoing ring opening. Utilizing cyclic, derivative cyclic, and linear sweep voltammetry, it was discovered that decay of radical cations generated from cyclopropylnaphthalenes in CH₃CN/CH₃OH is second order in radical cation and zero order in methanol. Anodic and Ce(IV) oxidation of all these naphthyl substrates in CH₃CN/CH₃OH led to cyclopropane ring-opened products. However, the rate constant for methanol-induced ring opening (Ar-c-C₃H₅⁺. + CH₃OH -> ArCH(·)CH₂CH₂O(H⁺)CH₃) is extremely small (<20 s⁻¹M⁻¹ for 1-cyclopropylnaphthalenes) despite the fact that ring opening is exothermic by nearly 30 kcal/mol. These results are explained on the basis of a product-like transition state for ring opening wherein the positive charge is localized on the cyclopropyl group, and thus unable to benefit from potential stabilization offered by the aromatic ring. Reactions of radical cations generated from 9-cyclopropylanthracenes in CH₃CN/CH₃CN have also been investigated electrochemically. The major products arising from oxidation of these anthryl substrates are attributable to CH₃OH attack at the aromatic ring rather than CH₃OH-induced cyclopropane ring opening. Ce(IV) oxidation of 9-cyclopropyl-10-methylanthracene and 9,10-dimethylanthracene further showed that radical cations generated from these anthryl substrates undergo neither cyclopropane ring opening nor deprotonation but nucleophilic addition. Side-chain oxidation products from Ce(IV) oxidation of methylated anthracenes arose from further reaction of nuclear oxidation products under acidic and higher temperature conditions. An analogous (more product-like) transition state picture can be applied for cyclopropane ring opening and deprotonation of these anthryl radical cations. Because of much higher intrinsic barrier to either nucleophile-induced cyclopropane ring opening or deprotonation of these anthryl radical cations, nucleophilic addition predominates. Stereoelectronic effects may be another additional factor contributing to this intrinsic barrier because the cyclopropyl group in these anthryl systems adopts a perpendicular conformation which may not meet the stereoelectronic requirements for cyclopropyl ring opening at either the radical cation or dication stage. / Ph. D.
30

Korrelationen zwischen Herstellungsprozess, Struktur und Eigenschaften von anodischen Aluminiumoxidschichten für Verschleißschutzanwendungen / Correlations between production process, structure and properties of anodic aluminium oxide coatings for wear protection applications

Meyer, Daniel 30 August 2017 (has links) (PDF)
Das Ziel dieser Dissertation besteht darin, einen Beitrag zur technologischen, ökonomischen und ökologischen Weiterentwicklung der anodischen Verfahren zur Oberflächenkeramisierung von Aluminium zu leisten. Die Arbeit ist in zwei thematische Schwerpunkte untergliedert. Im ersten Teil wird für die Hartanodisation eine hinsichtlich eines geringeren Energieeinsatzes optimierte Elektrolytzusammensetzung identifiziert und mit einem optimierten galvanostatischen Pulsmuster simultan appliziert. Im Ergebnis kann die Gesamtleistungsaufnahme um ca. 6 % reduziert werden, ohne die mechanischen Eigenschaften der Oxidschichten zu mindern. Im zweiten Schwerpunkt werden das Lichtbogen- und das Flammspritzen mit der plasmaelektrolytischen anodischen Oxidation kombiniert, um verschleißbeständige Aluminiumoxidschichten auf Stahl-, Titan- und Magnesiumsubstraten zu applizieren. Neben einer umfangreichen Mikrostrukturanalyse (REM, EDX, XRD, EBSD) werden die mechanischen Eigenschaften der Schichten untersucht und mit atmosphärisch plasmagespritzten Al2O3-Schichten verglichen. Insbesondere Oxidschichten auf lichtbogengespritztem AlCu4Mg1 zeigen dabei eine hohe Härte sowie eine sehr gute Verschleißbeständigkeit. / The aim of the present work is to contribute to the technological, economic and ecological improvement of the anodic processes for the surface ceramization of aluminum. The work is subdivided into two thematic priorities. In the first part, for the hard anodizing process an optimized electrolyte composition for a lower energy input is identified and applied simultaneously with an optimized galvanostatic pulse regime. As a result, the total power consumption can be reduced by approximately 6% without reducing the mechanical properties of the oxide coatings. In the second focus, arc and flame spraying are combined with plasma electrolytic anodic oxidation to apply wear resistant aluminum oxide coatings on steel, titanium and magnesium substrates. In addition to a comprehensive microstructural analysis (SEM, EDX, XRD, EBSD), the mechanical properties of the layers are investigated and compared with atmospheric plasma sprayed Al2O3 coatings. In particular, oxide layers formed on arc sprayed AlCu4Mg1 coatings show a high hardness as well as very good wear resistance.

Page generated in 0.1366 seconds