• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effets modulateurs du diabète, de l'obésité et de la génétique sur l'électrophysiologie des médicaments prolongeant l'intervalle QT

Caillier, Bertrand 18 April 2018 (has links)
Le cycle régulier des contractions des oreillettes, suivi par des contractions ventriculaires, pompe le sang de manière efficace à travers le coeur. Par contre, lorsque le fin équilibre qui régule le mécanisme est débalancé, les arythmies peuvent s'installer. Parmi les multiples facteurs qui peuvent affecter l'équilibre électrophysiologique cardiaque, il faut noter une maladie métabolique dont la prévalence ne cesse d'augmenter dans la population mondiale : le diabète de type 2. En effet, cette maladie augmente les risques de souffrir d'arythmie. Nous avons d'abord développé un modèle de cobaye diabétique de type 2 par une alimentation avec une diète spéciale sur une période de 200 jours. Ces animaux nous ont permis d'obtenir nos résultats dans des conditions ex- et in-vivo. Par la suite, nous avons évalué une hypothèse selon laquelle, en présence de diabète, l'ajout d'un bloquant d'IcaL évite la prolongation excessive du QT et la pro-arythmie, lorsque d'autres médicaments prolongeant le QT sont utilisés de manière concomitante. Nous avons quantifié l'effet de l'amlodipine (Norvasc®), un médicament bloquant d'IcaL et du dofétilide (Tikosyn®), un médicament bloquant d'iKr- Les résultats obtenus ont montré que l'amlodipine renverse partiellement l'effet pro-arythmique du dofétilide et protège contre la prolongation excessive de l'intervalle QT et la pro-arythmie médicamenteuse, particulièrement en présence de diabète de type 2. En parallèle, nous avons qualifié et quantifié l'effet pro-arythmique du bupropion (Wellbutrin®, Zyban®), un antidépresseur et adjuvant à la cessation tabagique. Des élargissements du QRS avaient été rapportés lors de surdosages de bupropion. Nous avons voulu vérifier l'hypothèse selon laquelle le bupropion affecte la conduction cardiaque par un bloc des jonctions gap. À l'aide des résultats obtenus, nous avons pu dire que, contrairement aux anti-arythmiques de classe I, le bupropion n'élargit pas le QRS en bloquant IN3, mais plutôt en inhibant les jonctions gap. C'est une propriété pharmacologique exceptionnelle observée chez aucun autre médicament actuellement disponible sur le marché. L'élargissement du QRS et les troubles de conduction cardiaques s'observent à des concentrations de bupropion facilement atteignables en clinique.
2

Applying computational approaches to the understanding of the consequences and opportunities of ion channel properties in atrial fibrillation

Aguilar, Martin 11 1900 (has links)
Cardiac arrhythmias are disorders of the electrical system of the heart and an often clinically-challenging group of disorders. Atrial fibrillation (AF) is the most common cardiac arrhythmia in the general population; it is associated with significant morbidity and mortality. Available antiarrhythmic drugs (AADs) for the treatment of AF are older molecules with sub- optimal efficacy and safety profiles. Recent advances in basic electrophysiology and the development of sophisticated mathematical modeling approaches could help in expanding our understanding of the basic mechanisms of AF and assist in the development of novel AF- selective AADs. The purpose of this thesis was to utilize computational approaches to the understanding of the consequences and opportunities of ion channel properties, with a special emphasis on AF. The cardiac action potential is the basic functional unit of the electrical system of the heart and is the manifestation of coordinated current fluxes through specialized proteins known as ion channels. Antiarrhythmic drugs act through modulation of ion channel properties. We hypothesized that mathematical modeling could be used to study and optimize the pharmacodynamic properties of AADs for the treatment of AF. We demonstrated that the pharmacodynamic properties (binding/unbinding characteristics) of a state-dependent Na+- channel blocker modulate the drug’s anti-/proarrhythmic actions with inactivated-state blockers being optimally AF-selective. The optimized drug’s selectivity for AF was the result of its rate- selectivity (stronger effects at fast vs slow cardiomyocyte activation rates) with relatively mild atrial-selective (stronger effects in atrial vs ventricular cardiomyocytes) actions. We found that the optimally AF-selective Na+-channel blocker had sub-optimal anti-AF efficacy, but that slightly less selective drugs had favorable AF-termination rates. We then sought to explore potential current-block combinations with synergistic AF- selective properties. Using mathematical modeling and laboratory experiments, we demonstrated that the combination of optimized state-dependent Na+-channel block and K+- channel block had synergistic effects, significantly augmenting AF termination rates for any level of AF-selectivity vs pure Na+-channel block. The mechanisms of these synergistic effects were found to be mediated by the functional interaction between the action potential prolonging- v effects of K+-channel block, the Na+-channel blocker’s voltage-dependent binding/unbinding properties and the Na+ channel’s inactivation characteristics, highlighting the non-linear nature of the cardiac action potential’s dynamics. Traditional K+ currents targeted by AADs have significant ventricular proarrhythmic liabilities. Using recent experimental observations, we updated the mathematic formulation for the inactivation dynamics of the ultra-rapid delayed-rectifier K+ current (IKur), an atrial-specific current. Using this model, we showed that, contrary to what had been proposed in the published literature, IKur rate-dependent properties are mediated by its activation properties with minimal contribution from inactivation, under physiological conditions. We also demonstrated that the contribution of IKur to action potential repolarization is preserved, or even increased, in the setting of electrical remodeling-induced IKur downregulation. Finally, we described the mechanisms of the forward rate-dependent of IKur block, mediated by functional non-linear interactions with the rapid delayed inward-rectifier K+ current (IKr), the only K+ current with such properties. Until recently, fibroblasts were considered to be electrically inactive. More recently, experimental work demonstrated the presence of functional ionic current on the fibroblast and possible cardiomyocyte-fibroblast coupling. Here, we described a novel kind of heart failure- induced electrical remodeling involving the fibroblasts ion channels. This was characterized by downregulation of the fibroblast voltage-dependent K+ current (IKv,fb) and upregulation of the fibroblast inward-rectifier K+ current (IKir,fb). We then implemented our experimental findings into a mathematical model of cardiomyocyte-fibroblast coupling and found fibroblast electrical remodeling to have significant effects on the cardiomyocyte’s electrophysiological properties. In a 2-dimension model of simulated AF, downregulation of IKv,fb had an antiarrhythmic effect whereas IKir,fb upregulation was found to be proarrhythmic. The studies presented here utilized mathematical modeling to study non-linear systems in cardiac electrophysiology to tackle questions that would have been difficult to approach with traditional laboratory-based experimentation. They also showcased how theoretical results can help orient and receive confirmation with subsequent experimental work or, conversely, novel experimental findings results be implemented into a mathematical model to investigate potential consequences. Mathematical modeling is a promising tool to help in studying the complex and vi non-linear effects of pharmacological modulation of ion channel properties and assist in the development of optimized antiarrhythmics for the treatment of AF, a major unmet need in clinical medicine. As models increase in sophistication to better represent the cardiomyocyte’s electrophysiology, they will almost certainly play an ever-growing role in expanding our understanding of the mechanisms of complex arrhythmias. / Les arythmies cardiaques représentent une famille de pathologies du système électrique cardiaque. La fibrillation auriculaire (FA), est l’arythmie cardiaque la plus fréquente dans la population générale et est associée à un fardeau de morbidité et mortalité cardiovasculaire important. Les médicaments antiarythmiques utilisées dans le traitement de la FA sont de vieilles molécules avec une efficacité sous-optimale et des effets secondaires importants. Les avancées récentes en électrophysiologie cardiaque fondamentale et le développement d’outils de modélisation mathématique ont le potentiel d’élargir notre compréhension des mécanismes pathophysiologiques en FA et contribuer au développement de nouveaux médicaments antiarythmiques optimisés pour le traitement de la FA. L’objectif global de cette thèse est d’utiliser les méthodes de modélisation mathématique pour étudier les conséquences et opportunités thérapeutiques de la modulation des canaux ioniques cardiaques, avec une emphase sur la FA. Le potentiel d’action cardiaque est l’unité fonctionnelle de base du système électrique cardiaque ; il est le résultat du flux coordonné de courants électriques à travers de protéines spécialisées, les canaux ioniques. Les molécules antiarythmiques agissent à travers la modulation des canaux ioniques cardiaques. Nous avons posé l’hypothèse que des modèles mathématiques pourraient être utilisés pour étudier et optimiser les propriétés pharmacodynamiques d’un médicament antiarythmique pour le traitement de la FA. Nous avons démontré que les propriétés pharmacodynamiques (propriétés de liage et déliage) d’un bloqueur des canaux Na+ état-dépendant modulent les effets anti- et pro-arythmiques de la molécule ; un bloqueur Na+ sélectif pour l’état inactivé du canal serait maximalement FA-sélectif. Cette sélectivité pour la FA est la conséquence de la sélectivité pour la fréquence (effet thérapeutique plus important à des fréquences d’activation du cardiomyocyte élevées vs basses) avec une contribution relativement faible de la sélectivité auriculaire (effet thérapeutique plus important sur les cardiomyocytes auriculaires vs ventriculaires). Par la suite, nous avons exploré des combinaisons de bloqueurs ioniques ayant des propriétés anti-FA synergiques. En utilisant des modèles mathématiques et des expériences en laboratoire, nous avons démontré que la combinaison d’un bloqueur des canaux Na+ et d’un iii bloqueur des canaux K+ a des effets synergiques, augmentant de façon importante l’efficacité anti-FA pour un même degré de sélectivité vs un bloqueur des canaux Na+ seul. Le mécanisme de synergie a été élucidé et consiste d’effets fonctionnels médiés par l’interaction du prolongement de la durée du potentiel d’action causé par le bloque des canaux K+, les propriétés voltage-dépendantes du liage et déliage du bloqueur des canaux Na+ ainsi que des propriétés d’inactivation des canaux Na+, démontrant la nature hautement non-linéaire des dynamiques du potentiel d’action cardiaque. Les courants K+ ciblés par les médicaments antiarythmiques ont des effets proarythmiques ventriculaires importants. En utilisant des données expérimentales récentes, nous avons proposé une formulation mise à jour des dynamiques d’inactivation du courant K+ IKur, un courant auriculo-sélectif. En utilisant ce modèle, nous avons démontré que, contrairement à ce qui avait été précédemment proposé, les propriétés fréquence-dépendantes du courant IKur dépendent de ses caractéristiques d’activation avec une contribution négligeable de ses propriétés d’inactivation, sous conditions physiologiques normales. Nous avons également démontré que la contribution de IKur à la repolarisation du potentiel d’action est maintenue, voir augmentée, dans le contexte de la diminution de IKur en situation de remodelage électrique induit par la FA. Finalement, nous avons décrit le mécanisme qui sous-tend les propriétés fréquence-dépendantes du bloque de IKur, l’unique courant K+ avec de telles caractéristiques. Jusqu’à très récemment, les fibroblastes cardiaques étaient considérés comme électriquement inactifs. Des travaux expérimentaux ont démontré la présence de canaux ioniques sur la surface de ces fibroblastes ainsi que la possibilité de couplage électrique entre cardiomyocytes et fibroblastes. Nous avons décrit un nouveau type de remodelage électrique en situation d’insuffisance cardiaque, le remodelage des courants ioniques des fibroblastes cardiaques. Ce remodelage est caractérisé par une diminution du courant K+ voltage-dépendant IKv,fb et une augmentation du courant K+ IKir,fb. Nous avons par la suite incorporé ces trouvailles expérimentales dans un modèle mathématique simulant l’interaction électrique entre cardiomyocytes et fibroblastes et montré que le remodelage électrique des fibroblastes peut avoir un impact important sur les propriétés électrophysiologiques des cardiomyocytes. Dans iv un modèle 2-dimensionel de FA, nous avons trouvé que la diminution de IKv,fb a un effet antiarythmique alors que l’augmentation de IKir,fb a des effets proarythmiques. Les études ici présentées utilisent les méthodes de modélisation mathématique pour l’étude de systèmes non-linéaires en électrophysiologie cardiaque et aborder des avenues de recherche difficilement accessibles aux méthodes de laboratoire traditionnelles. Elles démontrent également comment des résultats théoriques peuvent orienter et trouver confirmation dans des travaux expérimentaux subséquents ou, à l’inverse, des trouvailles expérimentales peuvent être implémentées dans les modèles mathématiques pour investiguer les conséquences de celles-ci. La modélisation mathématique est un outil prometteur pour l’étude des effets complexes et non-linéaires de la modulation pharmacologique des canaux ioniques et ainsi contribuer au développement de médicaments antiarythmiques optimisés pour le traitement de la FA, un besoin clinique majeur.

Page generated in 0.0468 seconds