Spelling suggestions: "subject:"antigen processing"" "subject:"entigen processing""
1 |
Antigen Stability Influences Processing Efficiency and Immunogenicity of Pseudomonas Exotoxin Domain III and OvalbuminJanuary 2020 (has links)
archives@tulane.edu / Effective adaptive immune responses depend on the presentation to CD4+ T cells antigen peptides bound to major histocompatibility complex class II proteins. The structure of an antigen strongly influences its processing within the endolysosome and potentially controls the identity and abundance of peptides that are presented to T cells. The dissertation presented here sought to expand our understanding of how antigen structure and stability influence adaptive immune responses for two model antigens. Pseudomonas exotoxin A domain III (PE-III) functions as an ADP-ribosyltransferase with significant cellular toxicity and has been incorporated into a recombinant immunotoxin for the treatment of cancer. The bacterial component of the PE-III immunotoxin is highly immunogenic and generates neutralizing antibodies that render subsequent treatments ineffective. A group of six single-amino-acid substitutions in PE-III that were predicted to disrupt CD4+ T-cell epitopes have been shown to reduce antibody responses in mice. Here we demonstrate that only one of the substitutions, R494A, exhibits reduced folding stability and proteolytic resistance through the removal of a hydrogen bond. This destabilization significantly reduces its antibody immunogenicity while generating CD4+ T-cell epitopes that are indistinguishable from those of wildtype PE-III. PE-III specific B cells isolated from R494A-immunized animals contained fewer somatic mutations, which are associated with affinity maturation, and exhibited a weaker germinal-center gene signature, compared to B cells from wildtype-immunized animals. Chicken ovalbumin (cOVA) has been studied for decades primarily due to the robust genetic and molecular resources that are available for experimental investigations. cOVA is a member of the serpin superfamily of proteins that function as protease inhibitors, although cOVA does not exhibit this activity. As a serpin, cOVA possess a protease-sensitive reactive center loop that lies adjacent to the OT-II epitope. We took advantage of the previously described single-substitution-variant, OVA R339T, which can undergo the dramatic structural transition observed in serpins to study how changes in loop size and protein stability influences CD4+ T-cell priming in vivo. We observed that OVA R339T loop-insertion increases overall stability and protease resistance and significantly shortens the reactive center loop. This results in reduced CD4+ T-cell priming of the OT-II epitope in SJL mice. These findings have implications for the design of more effective vaccines for the treatment of infectious diseases and cancer as well as the development of more robust CD4+ T-cell epitope prediction tools. / 1 / Daniel Moss
|
2 |
Antigen presentation in autoimmune diseaseMarshall, Naomi Jane January 2009 (has links)
The aim of my project was to examine the extent to which endogenous expression of a largely renal-specific antigen influences the repertoire in adulthood of autoreactive T cells specific to that antigen. The renal-specific antigen, human α3(IV)NC1, is the target of autoimmune attack in Goodpasture’s disease. This protein was expressed and purified in recombinant (using bacterial and mammalian cell expression systems) and purified in native (extracted from human tissue) forms. Transgenic mice were generated that express HLA-DR15 (associated with Goodpasture’s disease) as their sole MHC class II molecule, and for which α3(IV)NC1 can be endogenous or exogenous. The CD4 T cell responses of these mice were then tested following immunisation with α3(IV)NC1. In mice with endogenous expression of α3(IV)NC1 there were no consistent detectable proliferative T cell responses to any α3(IV)NC1 peptides in a set of overlapping peptides representative of the entire sequence. In the mice lacking endogenous α3(IV)NC1 there were consistent responses to the peptide α3(IV)NC1 136-150. This contains part of the peptide recognised by the most abundant autoreactive T cells in patients with acute Goodpasture’s disease. Therefore, the T cell responses seen in man to an endogenous (auto)antigen have similar fine specificity to those seen in mice responding to the same protein as a foreign antigen. This is surprising as one might expect self-tolerance in man to be most secure to such dominantly presented and immunogenic (in HLA DR15 mice) self peptides. However, recent work suggests that the peptide most commonly presented in humans is normally destroyed during antigen processing, giving a possible explanation for the lack of tolerance. Future work should study why tolerance is ineffective to this particular peptide, whether tolerance can be reinforced, these questions could be addressed using a transgenic mouse model that develops Goodpasture-like pathology. In addition, how processing is defective in Goodpasture’s disease could be explored by making antigen presenting hybridomas from patient samples or from the transgenic mouse line described within this thesis.
|
3 |
The Effect of HIV-1 and Accessory Proteins on Monocyte Derived Dendritic Cell Maturation and FunctionFairman, Peter 23 April 2013 (has links)
Dendritic cells (DCs) are specialized members of the innate immune system that are responsible for the initiation of primary adaptive immune responses whose purpose is to resolve infection and inflammation. During most viral infections, mature dendritic cells present critical viral antigens to naïve T-cells within secondary lymphoid organs, resulting in the generation of an antigen-specific adaptive immune response and clearance of the virus. During infection with HIV-1 however, the virus is not cleared and a chronic systemic infection develops characterized by immune dysfunction, CD4+ T-cell depletion, systemic inflammation, and opportunistic infections. A growing body of evidence indicates that HIV-1 subversion of DCs contributes to both HIV-1 pathologies and viral dissemination. A number of similar effects by accessory HIV-1 peptides on DC physiology have also been reported. In vitro studies demonstrate that HIV-1 inhibits DC maturation and function. Ex vivo studies on the other hand describe partially mature, dysfunctional DCs collecting in secondary lymphoid organs. In vitro studies examining the effects of HIV-1-Tat and HIV-1-Vpr have described opposing effects on DC maturation. Therefore we undertook experiments to comprehensively describe the effects of HIV-1 and the Tat and Vpr accessory peptides on DC maturation and function.
To understand the contributions of individual viral proteins to DC dysfunction we infected DCs with a dual tropic HIV-1 and examined phenotypic and functional changes after maturation with inflammatory cytokines. Following this we examined the influence of exogenous and endogenous HIV-1-Tat and HIV-1-Vpr on MDDC maturation and function using recombinant proteins and deletion mutant lab adapted HIV-1 strains.
Live dual tropic HIV-1 was found to selectively inhibit aspects of phenotypic maturation as well as antigen capture and presentation functions. MDDC MAPK responsiveness to bacterial LPS remained intact however. Exogenous accessory HIV-1 Tat and Vpr did not affect MDDC phenotype but inhibited dextran endocytosis and viral peptide presentation. HIV-1-gp120 increased iMDDC maturation while blunting cytokine induced decreases in MDDC antigen capture abilities. The deletion of HIV-1-Tat did not affect MDDC phenotype, but was found to affect antigen capture decreases by R5 tropic HIV-1BaL. Deletion of HIV-1-Vpr likewise did not affect MDDC phenotype, however it was found to be influential in HIV-1 induced decreases in MDDC antigen presentation to autologous T-cells. These accumulated results indicate that HIV-1 subverts DC maturation and function through whole virus effects and individual accessory peptide influences.
Understanding the mechanisms of DC dysfunction in HIV infection may provide some insight into infection prevention strategies and therapies leading to adaptive immune system activation and viral clearance.
|
4 |
The Effect of HIV-1 and Accessory Proteins on Monocyte Derived Dendritic Cell Maturation and FunctionFairman, Peter January 2013 (has links)
Dendritic cells (DCs) are specialized members of the innate immune system that are responsible for the initiation of primary adaptive immune responses whose purpose is to resolve infection and inflammation. During most viral infections, mature dendritic cells present critical viral antigens to naïve T-cells within secondary lymphoid organs, resulting in the generation of an antigen-specific adaptive immune response and clearance of the virus. During infection with HIV-1 however, the virus is not cleared and a chronic systemic infection develops characterized by immune dysfunction, CD4+ T-cell depletion, systemic inflammation, and opportunistic infections. A growing body of evidence indicates that HIV-1 subversion of DCs contributes to both HIV-1 pathologies and viral dissemination. A number of similar effects by accessory HIV-1 peptides on DC physiology have also been reported. In vitro studies demonstrate that HIV-1 inhibits DC maturation and function. Ex vivo studies on the other hand describe partially mature, dysfunctional DCs collecting in secondary lymphoid organs. In vitro studies examining the effects of HIV-1-Tat and HIV-1-Vpr have described opposing effects on DC maturation. Therefore we undertook experiments to comprehensively describe the effects of HIV-1 and the Tat and Vpr accessory peptides on DC maturation and function.
To understand the contributions of individual viral proteins to DC dysfunction we infected DCs with a dual tropic HIV-1 and examined phenotypic and functional changes after maturation with inflammatory cytokines. Following this we examined the influence of exogenous and endogenous HIV-1-Tat and HIV-1-Vpr on MDDC maturation and function using recombinant proteins and deletion mutant lab adapted HIV-1 strains.
Live dual tropic HIV-1 was found to selectively inhibit aspects of phenotypic maturation as well as antigen capture and presentation functions. MDDC MAPK responsiveness to bacterial LPS remained intact however. Exogenous accessory HIV-1 Tat and Vpr did not affect MDDC phenotype but inhibited dextran endocytosis and viral peptide presentation. HIV-1-gp120 increased iMDDC maturation while blunting cytokine induced decreases in MDDC antigen capture abilities. The deletion of HIV-1-Tat did not affect MDDC phenotype, but was found to affect antigen capture decreases by R5 tropic HIV-1BaL. Deletion of HIV-1-Vpr likewise did not affect MDDC phenotype, however it was found to be influential in HIV-1 induced decreases in MDDC antigen presentation to autologous T-cells. These accumulated results indicate that HIV-1 subverts DC maturation and function through whole virus effects and individual accessory peptide influences.
Understanding the mechanisms of DC dysfunction in HIV infection may provide some insight into infection prevention strategies and therapies leading to adaptive immune system activation and viral clearance.
|
5 |
PROTEASOME ACTIVATOR PA28 AND MAJOR HISTOCOMPATABILITY COMPLEX CLASS I PROCESSING <i>IN VITRO</i> AND <i>IN VIVO</i>BARTON, LANCE F. 17 July 2003 (has links)
No description available.
|
6 |
Effects of Toll-Like Receptors and Type I Interferon on Dendritic Cell Maturation and Activation of T CellsSimmons, Daimon P. January 2011 (has links)
No description available.
|
7 |
Immunogenicity of pluripotent stem cells and their differentiation productsMonecke, Sebastian 24 January 2013 (has links)
No description available.
|
8 |
The Relationship Between Inhibition, Conformation, and Catalysis of the Aminopeptidase ERAP1Maben, Zachary 15 November 2018 (has links)
ERAP1 is an aminopeptidase that is a component of antigen processing. To distinguish the role of ERAP1 from homologs ERAP2 and IRAP, I identified three specific ERAP1 inhibitors via a high-throughput screen. These compounds inhibit hydrolysis of a decamer peptide, and some inhibit ERAP1 in a cellular assay. These inhibitors enable dissection of ERAP1 mechanism. ERAP1 has been crystallized in two conformations: open and closed. I collected SAXS data on ERAP1 in the presence of various inhibitors. ERAP1 adopts an open conformation in solution, but some inhibitors stabilize the closed form. Compound 3 docks to a distal pocket 28Å from the active site zinc, while DG013 and DG014 bind to the active site. This distal pocket is an allosteric activation site, and allostery is mediated by stabilizing the closed state. I also identified an intermediate step in substrate binding where helix 4a becomes ordered while ERAP1 maintains an open conformation. Helix 4a then rotates and engages substrate when ERAP1 closes. The nonsynonymous SNP rs30187 at position 528 (Lys/Arg) subtly alters ERAP1 activity in vitro and correlates with disease incidence. Position 528 forms a conformation-dependent electrostatic interaction with Glu913 in the closed structure. The energetic contribution of this interaction is stronger for Lys528 than Arg528. Inhibitors that induce closing are more potent for Lys528 than Arg528. I propose a model where either helix 4a stabilization or allosteric site occupancy shift the conformational equilibrium towards a closed state, while substitution at position 528 alters the opening rate.
|
9 |
Toll-like Receptor 2-dependent Inhibition of Interferon gamma Signaling by <em>Mycobacterium tuberculosis</em>Pennini, Meghan E. 13 July 2006 (has links)
No description available.
|
10 |
Interaktion zytosolischer Peptidasen und deren Rolle bei der MHC-Klasse-I-Antigenpräsentation des HLA-A2-restingierten HCMV pp65495-503 EpitopsPaschke, Julia 20 January 2014 (has links)
MHC-Klasse-I präsentierte Epitope werden überwiegend durch den proteasomalen Abbau von Poly-Ubiquitin markierten Proteinen und defekten ribosomalen Produkten (DRiPs) generiert. Die post-proteasomale Prozessierung durch zytosolische Exo- und Endopeptidasen führt jedoch hauptsächlich zur Epitop-Zerstörung und nur ein sehr geringer Anteil der Peptide entkommt der Degradation. Bisher ist noch unklar, wie die enzymatischen Aktivitäten des heterogenen Peptidase-Pools im Zytosol die finale Epitop-Prozessierung beeinflussen. In der vorliegenden Arbeit wurden heteromere Interaktionen von zytosolischen Peptidasen analysiert und ihre Wirkung auf die Prozessierung und Präsentation von proteasomal generier-ten Vorläuferpeptiden in Bezug auf die HCMVpp65495-503 Epitop-Generierung untersucht. Glycerolgradientenzentrifugationen und Immunpräzipitationsexperimente zeigten, dass die zytosolischen Peptidasen Nardilysin (NRDc) und Aminopeptidase-B (AP-B) in den gleichen Fraktionen sedimentieren und zu heteromeren Komplexen interagieren. Die siRNA- abhängige Reduktion der Proteinexpression beider Peptidasen hatte einen positiven Effekt auf die HCMVpp65 spezifische CTL-Antwort. Demnach vermindert der Peptidase-Komplex die HCMVpp65-spezifische Epitop-Präsentation auf der Zelloberfläche. Im Gegensatz dazu bewirkte ein in vitro rekonstituierter trimerer Peptidase-Komplex jedoch die verstärkte HCMVpp65 Epitop-Generierung aus einem proteasomal generierten Vorläuferpeptid. Auf der anderen Seite führte gereinigte AP-B zu der anhaltenden Zerstörung des Epitops. Die Ergeb-nisse deuten somit darauf hin, dass sowohl einzelne als auch verschiedene Interaktionen von zytosolischen Peptidasen die Prozessierung und Präsentation des HCMVpp65-Epitops unterschiedlich modulieren und somit die HCMVpp65-spezifische antivirale Immunantwort beeinflussen. / MHC class I presented antigens are generated by the degradation of poly- ubiquitinated pro-teins and defective ribosomal products (DRiPs) by a major protease, the 26S proteasome. However, the post- proteasomal processing by cytosolic exo-and endopeptidases mainly leads to epitope destruction and only a very small proportion of the peptides escape degradation. So far, it is still unclear how the enzymatic activity of the heterogeneous pool of peptidases in the cytosol affects final epitope processing and therewith immune response. In the present work heteromeric interactions of cytosolic peptidases and their effect on pro-cessing and presentation of proteasomal generated peptides were analysed with regard to HCMVpp65495-503 epitope generation. Glycerol gradient centrifugation and immunoprecipitation experiments indicate that the cyto-solic peptidases Nardilysine (NRDc) and Aminopeptidase B (AP-B) sediment in the same fractions and interact to heteromeric complexes. The siRNA dependent reduction of protein expression of these two peptidases had a positive effect on the HCMVpp65 specific CTL re-sponse. Thus the peptidase complex reduces HCMVpp65 epitope presentation on the cell sur-face possibly due to epitope destruction. In contrast to the findings of the CTL assays, an in vitro reconstituted trimeric peptidase complex resulted in the increased generation of HCMVpp65 epitopes from a proteasomal generated peptide precursor. On the other hand pu-rified AP-B led to the ongoing destruction of the epitope. The findings obtained show that single cytosolic peptidases and various interactions of cytosolic peptidases regulate the pro-cessing and presentation of the HCMVpp65 epitope differently, thereby influencing the HCMV-specific antiviral immune response.
|
Page generated in 0.0669 seconds