• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 14
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laser cooling and manipulation of antimatter in the AEgIS experiment / Manipulation et refroidissement laser de l'antimatière, au sein de l'expérience AEgIS

Yzombard, Pauline 24 November 2016 (has links)
Ma thèse s’est déroulée dans le cadre de la collaboration AEgIS, une des expériences étudiant l’antimatière au CERN. L’objectif final est de mesurer l’effet de la gravité sur un faisceau froid d’antihydrogène (Hbar). AEgIS se propose de créer les Hbar froids par échange de charges entre un atome de Positronium (Ps) excité (état de Rydberg) et un antiproton piégé : 〖Ps〗^*+ pbar → (H^*)⁻ + e⁻. L’étude de la physique du Ps est cruciale pour AEgIS, et demande des systèmes lasers adaptés. Pendant ma thèse, ma première tâche a été de veiller au bon fonctionnement des systèmes lasers de l’expérience. Afin d’exciter le positronium jusqu’à ses états de Rydberg (≃20) en présence d’un fort champ magnétique (1 T), deux lasers pulsés spectralement larges ont été spécialement conçu. Nous avons réalisé la première excitation par laser du Ps dans son niveau n=3, et prouvé une excitation efficace du nuage de Ps vers les niveaux de Rydberg n=16-17. Ces mesures, réalisées dans la chambre à vide de test d’AEgIS, à température ambiance et pour un faible champ magnétique environnant, sont la première étape vers la formation d’antihydrogène. Le prochain objectif est de répéter ces résultats dans l’enceinte du piège à 1 T, où les antihydrogènes seront formés. Pour autant, malgré l’excitation Rydberg des Ps pour accroître la section efficace de collision, la production d’antihydrogène restera faible, et la température des H bar formés sera trop élevée pour toute mesure de gravité. Pendant ma thèse, j’ai installé au CERN un autre système laser prévu pour pratiquer une spectroscopie précise des niveaux de Rydberg du Ps. Ce système excite des transitions optiques qui pourraient convenir à un refroidissement Doppler : la transition n=1 ↔ n=2. J’ai étudié la possibilité d’un tel refroidissement, en procédant à des simulations poussées pour déterminer les caractéristiques d’un système laser adapté La focalisation du nuage de Ps grâce au refroidissement des vitesses transverses devrait accroitre le recouvrement des positroniums avec les antiprotons piégés, et ainsi augmenter grandement la production d’Hbar. Le contrôle du refroidissement et de la compression du plasma d’antiprotons est aussi essentiel pour la formation des antihydrogènes. Pendant les temps de faisceaux d’antiprotons de 2014 et 2015, j’ai contribué à la caractérisation et l’optimisation des procédures pour attraper et manipuler les antiprotons, afin d’atteindre des plasmas très denses, et ce, de façon reproductible. Enfin, j’ai participé activement à l’élaboration d’autre projet à l’étude AEgIS, qui vise aussi à augmenter la production d’antihydrogène : le projet d’un refroidissement sympathique des antiprotons, en utilisant un plasma d’anions refroidis par laser. J’ai étudié la possibilité de refroidir l’ion moléculaire C₂⁻, et les résultats de simulations sont encourageants. Nous sommes actuellement en train de développer au CERN le système expérimental qui nous permettra de faire les premiers tests de refroidissement sur le C₂⁻. Si couronné de succès, ce projet ne sera pas seulement le premier résultat de refroidissement par laser d’anions, mais ouvrira aussi les portes à une production efficace d’antihydrogènes froids. / My Ph.D project took place within the AEgIS collaboration, one of the antimatter experiments at the CERN. The final goal of the experiment is to perform a gravity test on a cold antihydrogen (Hbar) beam. AEgIS proposes to create such a cold Hbar beam based on a charge exchange reaction between excited Rydberg Positronium (Ps) and cold trapped antiprotons: 〖Ps〗^* + pbar → (H^*)⁻ + e⁻. Studying the Ps physics is crucial for the experiment, and requires adapted lasers systems. During this Ph.D, my primary undertaking was the responsibility for the laser systems in AEgIS. To excite Ps atom up to its Rydberg states (≃20) in presence of a high magnetic field (1 T), two broadband pulsed lasers have been developed. We realized the first laser excitation of the Ps into the n=3 level, and demonstrated an efficient optical path to reach the Rydberg state n=16-17. These results, obtained in the vacuum test chamber and in absence of strong magnetic field, reach a milestone toward the formation of antihydrogen in AEgIS, and the immediate next step for us is to excite Ps atoms inside our 1 T trapping apparatus, where the formation of antihydrogen will take place. However, even once this next step will be successful, the production rate of antihydrogen atoms will nevertheless be very low, and their temperature much higher than could be wished. During my Ph.D, I have installed further excitation lasers, foreseen to perform fine spectroscopy on Ps atoms and that excite optical transitions suitable for a possible Doppler cooling. I have carried out theoretical studies and simulations to determine the proper characteristics required for a cooling laser system. The transverse laser cooling of the Ps beam will enhance the overlap between the trapped antiprotons plasma and the Ps beam during the charge-exchange process, and therefore drastically improve the production rate of antihydrogen. The control of the compression and cooling of the antiproton plasma is also crucial for the antihydrogen formation. During the beam-times of 2014 and 2015, I participated in the characterization and optimization our catching and manipulation procedures to reach highly compressed antiproton plasma, in repeatable conditions. Another project in AEgIS I took part aims to improve the formation rate of ultracold antihydrogen, by studying the possibility of a sympathetically cooling of the antiprotons using a laser-cooled anion plasma. I investigated some laser cooling schemes on the C₂⁻ molecular anions, and the simulations are promising. I actively contribute to the commissioning of the test apparatus at CERN to carry on the trials of laser cooling on the C₂⁻ species. If successful, this result will not only be the first cooling of anions by laser, but will open the way to a highly efficient production of ultracold antihydrogen atoms.
12

Study of the antihydrogen atom and ion production via charge exchange reaction on positronium / Étude de la production d'atomes et d'ions d'antihydrogène par réaction d'échange de charge avec du positronium

Latacz, Barbara Maria 24 September 2019 (has links)
Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible pour l'antimatière. La première étape de l'expérience est de produire des ions d'antihydrogène et de les amener dans un piège de Paul, où ils peuvent être refroidis à une température de l'ordre du μK en utilisant la technique du refroidissement sympathique avec des ions Be⁺ eux-mêmes mis dans leur état fondamental par la technique Raman à bande latérale. Une température de l'ordre du μK correspond à une vitesse de la particule de l'ordre de 1 m/s. Une fois cette vitesse atteinte, l'ion antihydrogène peut être neutralisé et commence sa chute. Ceci permet une précision de 1 % sur la mesure de l’accélération gravitationnelle g pour l’antimatière avec environ 1500 événements. Cependant, pour mesurer la chute libre, il faut d'abord produire l'ion antihydrogène. Celui-ci est formé dans les réactions d'échange de charge entre des antiprotons et des antihydrogènes avec du positronium. Positronium et atomes d'antihydrogène peut se trouver soit à l’état fondamental, soit dans un état excité. Une étude expérimentale de la mesure de la section efficace de ces deux réactions est décrite dans cette thèse. La production de l'atome d'antihydrogène ainsi que de l'ion se passe à l’intérieur d'une cavité. La formation d'un antihydrogène ion lors d'une interaction entre faisceaux requiert environ 5x10⁶ antiprotons/paquet et quelques 10¹¹ Ps/cm⁻³ de densité de positronium à l’intérieur d'une cavité. Celle-ci est produite par un faisceau contenant 5x10¹⁰ positrons par paquet. La production de faisceaux aussi intenses avec les propriétés requises est en soi un challenge. Le développement de la source de positrons de GBAR est décrite. Celle-ci est basée sur un accélérateur linéaire à électrons de 9 MeV. Le faisceau d’électrons est incident sur une cible de tungstène où les positrons sont créés par rayonnement de freinage (gammas) et création de paires. Une partie des positrons ainsi créés diffusent à nouveau dans un modérateur de tungstène en réduisant leur énergie à environ 3 eV. Ces particules sont re-accélérées à une énergie d'environ 53 eV. Aujourd'hui, le flux mesuré de positrons est au niveau de 6x10⁷ e⁺/s, soit quelques fois. Puis la thèse comporte une courte description des préparatifs pour les faisceaux d'antiprotons ou de protons, terminée par un chapitre sur le taux de production attendu d'atomes et d'ions d'antihydrogène. En aval de la réaction, les faisceaux d'antiprotons, d'atomes et d'ions d'antihydrogène sont guidés vers leur système de détection. Ceux-ci ont été conçus de façon à permettre la détection d'un à plusieurs milliers d'atomes d'antihydrogène, un seul ion antihydrogène et tous les 5x10⁶ antiprotons. Ceci est particulièrement difficile parce que l'annihilation des antiprotons crée beaucoup de particules secondaires qui peuvent perturber la mesure d'un atome ou ion. La majeure partie de la thèse consiste en la description des bruits de fond attendus pour la détection des atomes et ions d'antihydrogène. De plus, le système de détection permet de mesurer les sections efficaces pour les réactions symétriques de production d'atomes et d'ions hydrogèene par échange de charge entre protons et positronium. La partie production d’antihydrogène ions de l’expérience a été complètement installée au CERN en 2018. Les premiers tests avec des antiprotons provenant du décélérateur ELENA ont été effectués. Actuellement, l’expérience est testée avec des positrons et des protons, de façon à former des atomes et ions hydrogène. Une optimisation de la production de ces ions de matière aidera à se préparer pour la prochaine période de faisceau d'antiprotons en 2021. / The main goal of the GBAR collaboration is to measure the Gravitational Behaviour of Antihydrogen at Rest. It is done by measuring the classical free fall of neutral antihydrogen, which is a direct test of the weak equivalence principle for antimatter. The first step of the experiment is to produce the antihydrogen ion and catch it in a Paul trap, where it can be cooled to μK temperature using ground state Raman sideband sympathetic cooling. The μK temperature corresponds to particle velocity in the order of 1 m/s. Once such velocity is reached, the antihydrogen ion can be neutralised and starts to fall. This allows reaching 1 % precision on the measurement of the gravitational acceleration g for antimatter with about 1500 events. Later, it would be possible to reach 10⁻⁵ - 10⁻⁶ precision by measuring the gravitational quantum states of cold antihydrogen. However, in order to measure the free fall, firstly the antihydrogen ion has to be produced. It is formed in the charge exchange reactions between antiproton/antihydrogen and positronium. Positronium and antihydrogen atoms can be either in a ground state or in an excited state. An experimental study of the cross section measurement for these two reactions is described in the presented thesis. The antihydrogen atom and ion production takes place in a cavity. The formation of one antihydrogen ion in one beam crossing requires about 5x10⁶ antiprotons/bunch and a few 10¹¹ Ps/cm⁻³ positronium density inside the cavity, which is produced with a beam containing 5x10¹⁰ positrons per bunch. The production of such intense beams with required properties is a challenging task. First, the development of the positron source is described. The GBAR positron source is based on a 9 MeV linear electron accelerator. The relatively low energy was chosen to avoid activation of the environment. The electron beam is incident on a tungsten target where positrons are created from Bremsstrahlung radiation (gammas) through the pair creation process. Some of the created positrons undergo a further diffusion in the tungsten moderator reducing their energy to about 3 eV. The particles are re-accelerated to about 53 eV energy and are adiabatically transported to the next stage of the experiment. Presently, the measured positron flux is at the level of 6x10⁷ e⁺/s, which is a few times higher than intensities reached with radioactive sources. Then, the thesis features a short description of the antiproton/proton beam preparations, finalised with a chapter about the expected antihydrogen atom and ion production yield. After the reaction, antiproton, antihydrogen atom, and ion beams are guided to the detection system. It is made to allow for detection from 1 to a few thousand antihydrogen atoms, a single antihydrogen ion and all 5x10⁶ antiprotons. It is especially challenging because antiproton annihilation creates a lot of secondary particles which may disturb measurements of single antihydrogen atoms and ions. The main part of the Thesis is the description of the expected background for the antihydrogen atom and ion detection. Additionally, the detection system allows measuring the cross sections for the symmetric reactions of a hydrogen atom and ion production through charge exchange between protons and positronium. The antihydrogen ion production part of the experiment was fully installed at CERN in 2018. The first tests with antiprotons from the ELENA decelerator were done. Currently, the experiment is being commissioned with positrons and protons, in order to perform the hydrogen atom and ion formation. The optimisation of the ion production with matter will help to be fully prepared for the next antiproton beam time in 2021.
13

Four-Body Treatment of the Hydrogen-Antihydrogen System

Stegeby, Henrik January 2012 (has links)
This thesis presents a nonadiabatic (4-body) description of the hydrogen-antihydrogen system at a nonrelativistic level. The properties of the system, the rearrangement processes and the possible existence of resonance states are investigated by using a variational method for coupled arrangement channels, the Gaussian Expansion Method, and the stabilization method. The 4-body basis set is optimized by means of prediagonalization of 2-body fragments. In paper I, a mass-scaling procedure of the Born-Oppenheimer potential is introduced for the description of the relative motion between hydrogen and antihydrogen. The nonadiabaticity of the system is investigated in paper II.
14

Calcul de sections efficaces du système à trois corps (e − , e + , p̄) avec les équations de Faddeev-Merkuriev / Cross sections calculation of the (e − , e + , p̄) three body system with the Faddeev-Merkuriev equations

Valdes, Mateo 29 September 2017 (has links)
Cette thèse est consacrée au calcul de sections efficaces de réactions impliquant le système à trois corps (e − , e + , p̄) à des énergies représentatives de l’expérience GBAR. Deux approches théoriques ont été utilisées. La première, appelée méthode des canaux couplés, permet de traiter le système dans un cadre théorique plus simple. La deuxième, basée sur le formalisme rigoureux des équations de Faddeev-Merkuriev, a permis le calcul explicite des sections efficaces. Une des difficultés majeures provient de la dégénérescence accidentelle du premier état excité des atomes d’antihydrogène et de positronium. Le traitement de cette dégénérescence a été réalisé dans un premier temps dans le formalisme de canaux couplés avant d’être adapté au code des équations de Faddeev-Merkuriev. Dans ce document, nous discutons les sections efficaces dans le contexte de l’expérience GBAR et interprétons les phénomènes résonnants mis en évidence, les résonances de Feshbach et les oscillations de Gailitis-Damburg. / This thesis is dedicated to cross section calculations involving the three body system (e − , e + , p̄) at representative energies for the GBAR experiment. Two different theoretical formalisms have been used. The first one, the close coupling method, allows to study the system in a more simple and schematic theoretical frame. The second, based on the mathematically rigorous formalism of the Faddeev-Merkuriev equations, is used to compute the explicit cross sections. One of the major difficulties comes from the accidental degeneracy of the antihydrogen and positronium atoms first excited states. The treatment of this degeneracy has been realised, in a first time, with the close-coupling formalism before being adapted to the Faddeev-Merquriev equations code. In this document, we discuss the cross sections in the GBAR experiment frame and we construe the highlighted resonant phenomena, the Feshbach resonances and the Gailitis-Damburg oscillations.

Page generated in 0.0495 seconds