Spelling suggestions: "subject:"antioxidant power"" "subject:"ntioxidant power""
1 |
Emulsions de Pickering stabilisées par des poudres végétales : propriétés et rôle des paramètres de composition et de formulation / Pickering emulsions stabilized by vegetal powders : properties and role of composition and emulsification parametersJoseph, Cécile 07 December 2018 (has links)
L’objectif de cette étude est de valoriser des coproduits végétaux tout en proposant une alternative biosourcée, économique et performante aux tensioactifs classiques. Des émulsions de type huile-dans-eau sont fabriquées à partir de poudres végétales finement broyées comme seul matériel tensioactif. Les systèmes dispersés qui en résultent, stabilisés par des particules solides, sont des émulsions dites de Pickering. La première partie de ce manuscrit décrit l’influence du procédé d’émulsification (rotorstator en régime turbulent, ultrasons et homogénéisation haute pression) et des paramètres de formulation sur les propriétés d’émulsions stabilisées par de la poudre de cacao. Le rôle des différentes fractions de la poudre est déterminé et le phénomène de coalescence limitée propre aux émulsions de Pickering est étudié. Nous mettons en évidence une évolution structurale des particules (« dépliement ») sous l’effet du cisaillement appliqué lors de l’émulsification, permettant d’augmenter leur performance en tant qu’agents stabilisants. L’influence de la nature végétale est explorée en élargissant l’étude à des poudres de compositions différentes issues de tourteaux de colza et de lupin. La stabilité de ces émulsions face à l’élimination de la phase continue est ensuite évaluée au regard de la technique de séchage, par lyophilisation et atomisation. Des émulsions sèches riches en huile et redispersables dans l’eau sont ainsi obtenues. Enfin, le pouvoir antioxydant des poudres végétales avant et après séchage des émulsions est caractérisé. / This study aimed at valorizing vegetal byproducts while offering a bio-sourced, cheap and efficient alternative to conventional surfactants. Oil-in-water emulsions were obtained from finely ground plant powders as the only surfactant material. The resulting dispersed systems, stabilized by solid particles, are so-called Pickering emulsions. The first part of this manuscript describes the influence of the emulsification process (rotor-stator in turbulent regime, sonication and high-pressure homogenization) and of the formulation parameters on the properties of emulsions stabilized by cocoa powder. The role of the different fractions of the powder was determined and a phenomenon characteristic of Pickering emulsions, namely limited coalescence, was identified. We evidenced a structural evolution of the particles ("unwrapping") under the effect of the shear applied during the emulsification process, allowing to increase their performance as stabilizing agents. The influence of the vegetal origin was explored by extending the study to powders deriving from rapeseed and lupin oilcakes. The stability of these emulsions with respect to the elimination of the continuous phase was evaluated using 2 drying techniques, freeze-drying and spray-drying. Dry emulsions rich in oil and redispersable in water were obtained. Finally, the antioxidant properties of vegetable powders before and after the drying process were characterized.
|
2 |
Atividade antioxidante de produtos proteicos de linhaça (Linum usitatissimum L.) / Antioxidante activity of flaxseed protein products (Linum usitatissimum L.)Silva, Fernanda Guimarães Drummond e, 1983- 04 December 2012 (has links)
Orientador: Flavia Maria Netto / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-19T21:19:52Z (GMT). No. of bitstreams: 1
Silva_FernandaGuimaraesDrummonde_M.pdf: 1363127 bytes, checksum: 68b1a97c95798f4425019ee900814160 (MD5)
Previous issue date: 2012 / Resumo: Existem evidências numerosas sobre o papel dos radicais livres em uma série de condições patológicas, incluindo envelhecimento, câncer, esclerose múltipla, doenças cardiovasculares. Hidrolisados protéicos de diferentes fontes têm sido estudados por seu potencial antioxidante. A atuação antioxidante da proteína, na maioria das vezes, encontra-se limitada devido à conformação espacial, que concentra resíduos capazes de neutralizar radicais livres no interior da molécula, dificultando o acesso das espécies reativas aos centros nucleofílicos. A hidrólise da proteína contribui para aumentar a exposição desses resíduos de aminoácidos, aumentando sua atuação como antioxidante. Compostos fenólicos podem estar presentes em hidrolisados proteicos de origem vegetal, devido a sua associação com as proteínas. Métodos in vitro que simulam as condições do trato gastrointestinal permitem estudar como a digestão pode interferir na atividade antioxidante de peptídeos e compostos fenólicos. O presente trabalho tem como objetivos obter hidrolisados proteicos com capacidade antioxidante a partir da farinha de linhaça e avaliar o efeito da digestão in vitro pode interferir nessa atividade. A farinha de linhaça marrom foi desengordurada, obtendo-se a farinha de linhaça marrom desengordurada (FLMD). O concentrado proteico de linhaça (CPL) foi obtido a partir da FLMD por extração alcalina e precipitação no ponto isoelétrico seguida de neutralização. Para obtenção dos hidrolisados proteicos (HPL), a partir do CPL, com Alcalase, foi realizado um delineamento composto central rotacional (DCCR) 2². As variáveis independentes foram pH que variou entre 7,5 a 9,5 e relação enzima: substrato (E:S) que variou de 1:150 a 1:30. As variáveis dependentes foram grau de hidrólise (GH), teor de substâncias redutoras do reagente de Folin-Ciocalteau e atividade antioxidante, determinada por FRAP e ORAC. Teor de substâncias redutoras e atividade antioxidante foram avaliados a partir dos extratos aquosos e metanólico (metanol 70%). Os hidrolisados de maior atividade antioxidante, a FLMD e o CPL foram submetidos à digestão in vitro, simulando as condições da digestão gastrintestinal. As amostras antes e após a digestão in vitro foram caracterizadas por eletroforese em sistema SDS-PAGE Tricina e por cromatografia liquida de alta eficiência de fase reversa (HPLC- RP). O teor de substâncias redutoras e da atividade antioxidante das amostras FLMD, CPL e HPL foram avaliados antes e após a digestão in vitro. As condições ótimas para obtenção de HPL de maior GH (21,0%) são pH entre 7,5 e 8,0 e E:S entre 1:60 e 1:30, indicando que a faixa de pH ótimo da enzima e a alta E:S favorecem maior hidrólise do CPL. Para obtenção de HPL com maior teor de substâncias redutoras para os extratos aquoso (24 mg EAG/ g HPL) e metanólico (20 mg EAG/ g HPL) as condições ótimas são pH ~ 8,5 /E:S 1:30. Este resultado parece estar relacionado à liberação de compostos fenólicos ligados a proteína e também de peptídeos durante a hidrólise. Açúcares e aminoácidos aromáticos presentes no hidrolisado podem interferir na reação e superestimar o teor de fenóis dos HPL. A maior atividade antioxidante determinada pelo método de FRAP para o extrato aquoso (42 mg SF/ g HPL) se dá nas condições de pH ~ 9,5/E:S ~1:150 e para o extrato metanólico (40 mg SF/ g HPL) pH entre 8,5 e 9,0/E:S entre 1:90 a 1:150. Para o método de ORAC, as condições ótimas para maior atividade antioxidante no extrato aquoso (300 µmol TE/ g HPL) são pH entre 7,5 a 9,5/E:S ~ 1:30 ou ~1:150 e para o extrato metanólico (330 µmol TE/ g HPL) são pH ~ 8,5/E:S entre 1:150 e 1:30. Os hidrolisados de maior atividade antioxidante foram os obtidos em pH 8,5/E:S 1:90, e em pH 9,2/E:S 1:133 denominados HPL 0 e HPL 3, respectivamente. Para a FLMD, CPL e os hidrolisados, após a digestão in vitro, observou-se que o teor de substâncias redutoras totais aumentou (9 a 20 vezes) para todas as amostras. O teor de substâncias redutoras do CPL (~24 mg EAG/ g amostra), em ambos os extratos, após a digestão in vitro se igualou ao teor dos hidrolisados (~23 mg EAG/ g amostra). Este resultado sugere que tanto a hidrólise com Alcalase quanto o processo digestório liberam compostos redutores, dentre eles fenólicos da proteína de linhaça. A atividade antioxidante dos extratos de FLMD e CPL, determinada por FRAP, também aumentou (de 3 a 10 vezes) após a digestão, mas não se igualou à atividade antioxidante dos hidrolisados (48 mg SF/g amostra). No entanto, o CPL apresentou atividade antioxidante determinada por ORAC semelhante à dos hidrolisados no extrato aquoso (~420,24 µmol TE/ g amostra) e 10 % maior que o encontrado para os hidrolisados (~365 µmol TE/ g amostra) no extrato metanólico. Após a digestão in vitro, os hidrolisados apresentaram a maior atividade antioxidante medida por FRAP (50 mg SF/ g amostra), e o CPL, a maior atividade determinada pelo método de ORAC (~430 µmol TE/ g amostra). Estes resultados sugerem o processo digestório é tão ou mais eficiente que a Alcalase em liberar os compostos com atividade redutora no CPL. Uma vez que a metodologia de determinação da atividade antioxidante por ORAC tem maior proximidade com o mecanismo de oxirredução que ocorre in vivo, esses resultados sugerem o uso do CPL como melhor produto protéico da linhaça com maior potencial antioxidante para a formulação de nutracêuticos e alimentos funcionais / Abstract: There are several evidences which indicate the role of free radicals on a series of pathological conditions, including aging, cancer, multiple sclerosis and cardiovascular disease. Hydrolysates from different sources have been studied because of their antioxidant potential. The antioxidant activity of the protein, in most cases, is limited due to their conformation, which concentrates residues capable of neutralize free radicals in the molecule¿s core, hampering the access of the reactive species to nucleophilic sites. The protein hydrolysis contributes to increasing the exposure of these amino acid residues, increasing their role as antioxidants. Phenolic compounds may also be present in vegetable protein hydrolysates because of their association with proteins. In vitro methods that simulate the conditions of the gastrointestinal digestion are an important way to evaluate how the digestion affects the antioxidant activity of phenolic compounds and peptides. This study aims at obtaining hydrolysates with antioxidant capacity from defatted flaxseed flour and evaluate the effect of the in vitro digestion on this activity. The brown flaxseed flour was defatted, resulting in the brown defatted flaxseed meal (BDFM). The flaxseed protein concentrate (FPC) was obtained from the BDFM by alkaline extraction and precipitation at the isoelectric point followed by neutralization. To obtain the flaxseed protein hydrolysates (FPL), using FPC and Alcalase, a central composite rotational design (DCCR) was performed. The independent variables were pH ranging from 7.5 to 9.5 and enzyme: substrate ratio (E: S) that ranged from 1:150 to 1:30. The dependent variables were the degree of hydrolysis (DH), total phenolic content and antioxidant activity, determined by FRAP and ORAC. Phenolic and antioxidant activity were evaluated from the aqueous and methanol (70% methanol). The hydrolysates with the highest antioxidant activity, the CPL FLMD were submitted to the in vitro digestion. The samples obtained before and after the in vitro digestion were characterized by electrophoresis SDS-PAGE- tricine and HPLC. The total phenolic content and antioxidant activity of FLMD, CPL and HPL were evaluated before and after in vitro digestion. The optimum conditions to obtain HPL with the highest GDH (21.0%) are pH (7.5-8) and E:S ratio (1:60-1:30), which indicates that the Alcalase optimum pH and highest E:S ratio collaborates to highest hydrolysis of CPL. To obtain HPL with higher content of Folin-Ciocalteau reducing compounds content in aqueous (EAG 24 mg / g HPL) and methanol (20 mg EAG / g HPL) extracts, the optimum conditions were pH ~ 8.5 / E: S 1:30. This result seems to be related to the release of phenolic compounds bound to protein and also of peptides during hydrolysis. The highest antioxidant activity determined by the FRAP method in the aqueous extract (42 mg SF / g HPL) occurs under pH ~ 9.5 / E: S ~ 1:150 and the methanol extract (40 mg SF / g HPL) pH 8.5-9.0 / E: S 1:90-1:150. For the ORAC method, optimum conditions for increased antioxidant activity in aqueous extract (300 µmol TE / g HPL) are pH 7.5-9.5 / E: S ~ 1:30 or 1:150 and the methanol extract (330 µmol TE / g HPL) are pH ~ 8.5 / E: S 1:30-1:150. The hydrolysates with the highest antioxidant activities were obtained at pH 8.5 / E: S 1:90, and at pH 9.2 / E: S 1:133 denominated HPL ) and HPL 3, respectively. For FLMD, CPL and hydrolysates, after in vitro digestion, the content increased (9-20 times) for all samples. The Folin-Ciocalteau reducing capacity of the CPL (EAG ~ 24 mg / g sample) in both extracts after in vitro digestion equaled the content of hydrolysates (EAG ~ 23 mg / g sample). This result suggests that both hydrolysis with Alcalase and the digestion process are able to release phenolic compounds from the flaxseed products. The antioxidant activity of extracts of FLMD, CPL determined by FRAP, also increased (from 3 to 10 times) after digestion, but did not reached the antioxidant activity of hydrolysates (48 mg SF / g sample). However, when the activity was determined by ORAC, the FPC showed value similar to the hydrolysates, measured on the aqueous extract (~ 420.24 µmol TE / g sample) and 10% higher than on the methanol extract (~ 365 µmol TE / g sample). After in vitro digestion, hydrolysates showed the highest antioxidant activity measured by FRAP (SF 50 mg / g sample), and the FPC, the highest activity determined by ORAC method (~ 430 micromol TE / g sample). These results suggest that digestive process are equally or more effective than Alcalase in releasing peptides and phenolic compounds present in the FPC. Since the methodology for determining the antioxidant activity by ORAC utilizes a biologically relevant radical source, these results suggest the use of FPC as the best protein product of flaxseed with potential antioxidant in the formulation of nutraceuticals and functional foods / Mestrado / Nutrição Experimental e Aplicada à Tecnologia de Alimentos / Mestre em Alimentos e Nutrição
|
3 |
Antioxidant properties of Lippia javanica (Burm.f.) Spreng. / C. PretoriusPretorius, Corlea January 2010 (has links)
The evolution of aerobic metabolic processes unavoidably led to the production of reactive
oxygen species (ROS). ROS have the ability to cause harmful oxidative damage to
biomolecules. Increased ROS generation and subsequent oxidative stress have been
associated with aging and neurodegenerative disorders such as Parkinson’s and Alzheimer’s
diseases as a result of the extreme sensitivity of the central nervous system to damage from
ROS. Antioxidant defence systems have co–evolved with aerobic metabolic processes to
counteract oxidative damage inflicted by ROS. The impact of neurodegenerative disorders
on society is increasing rapidly as the life expectancy of the global population increases. In
this day and age, a much younger group of the population is also experiencing
neurodegenerative symptoms as a result of the harmful effect of the human
immunodeficiency virus (HIV) on the central nervous system.
Plants are an invaluable source of medicinal compounds. The use of plants for their healing
properties is rooted in ancient times. The aim of this study was to select from twenty one
plants, the plant with the most promising antioxidant activity and to determine whether
extracts of this plant could act as free radical scavengers, comparing the results to Trolox, a
known free radical scavenger. The next step was to isolate and characterize a compound
from an extract exhibiting promising antioxidant activity. Bioassay–guided fractionation was
followed to achieve this.
During screening trials, twenty one plants, namely Berula erecta, Heteromorpha
arborescens, Tarchonanthus camphoratus, Vernonia oligocephala, Gymnosporia buxifolia,
Acacia karroo, Elephantorrhiza elephantina, Erythrina zeyheri, Leonotis leonurus,
Plectranthus ecklonii, P. rehmanii, P. venteri, Salvia auretia, S. runcinata, Solenostemon
latifolius, S. rotundifolius, Plumbago auriculata, Clematis brachiata, Vangueria infausta,
Physalis peruviana and Lippia javanica were selected from literature, based on reported
antioxidant activity within the plant families, for screening of their antioxidant activity. One
hundred and ten extracts were prepared from the leaves, using Soxhlet extraction and the
solvents petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol
(EtOH), consecutively.
The focus during initial screening trials was on chemistry–based assays. The oxygen radical
absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were
employed for the primary screening of the one hundred and ten leaf extracts. The ORAC
assay was used to determine whether the plant extracts were able to scavenge peroxyl
radicals and the FRAP assay was used to determine the reducing abilities of the extracts.
Quantification of the peroxyl radical scavenging activity by the ORAC assay revealed that
activity was observed for most of the extracts, with the ethyl acetate and ethanol extracts of
L. javanica exhibiting the most promising activity. This pattern of activity was also found with the reducing capacity evaluated by the FRAP assay in which the EtOAc and EtOH extracts of
L. javanica also exhibited the most promising activity.
L. javanica was selected for further study by screening for biological activity, employing the
nitro–blue tetrazolium (NBT) assay and thiobarbituric acid reactive substances (TBARS)
assay. Using a cyanide model to induce neurotoxic effects in rat brain homogenate, the
neuroprotective properties of the extracts of L. javanica leaves were examined using the NBT
assay and compared to that of Trolox. The NBT assay determines the level of superoxide
anions. All the extracts of L. javanica significantly reduced superoxide anion generation at all
concentrations used. The petroleum ether and ethyl acetate extracts, at all concentrations,
reduced superoxide anion generation to values lower than that of the control, suggesting that
these extracts may be able to attenuate normal free radical processes in the brain. The
petroleum ether extract exhibited the most promising activity at a concentration of 1.25 and
2.5 mg/ml and also exhibited similar results as the ethyl acetate extract at a lower
concentration than the ethyl acetate extract (2.5 mg/ml compared to 5 mg/ml).
A toxin–solution consisting of hydrogen peroxide (H2O2), iron(III)chloride (FeCl3) and ascorbic
acid was used to induce lipid peroxidation and the ability of the extracts of the leaves of
L. javanica to attenuate lipid peroxidation was investigated in rat brain homogenate and
compared to that of Trolox. All of the extracts of L. javanica significantly attenuated toxininduced
lipid peroxidation at all concentrations used. All of the extracts were also able to
significantly attenuate toxin–induced lipid peroxidation to values lower than that of the control.
These results suggest that all of the extracts of L. javanica possess the ability to attenuate
not only toxin–induced lipid peroxidation, but also lipid peroxidation that occurs during normal
processes in the brain.
The petroleum ether extract was subjected to bioassay–guided fractionation using column
and thin–layer chromatography and the NBT and TBARS assays. Fraction DD1 was
investigated by means of nuclear magnetic resonance, infrared and mass spectrometry. The
exact structure of fraction DD1 was not elucidated.
Considering all the results, it is clear that L. javanica shows great potential as a medicinal
plant with antioxidant activity and may therefore be beneficial in diminishing the destructive
oxidative effects inflicted by free radicals. There are however still many compounds to be
isolated from L. javanica.
Key words: Verbenaceae, Lippia javanica, antioxidant, neurodegeneration, oxygen radical
absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), nitro–blue
tetrazolium assay (NBT), thiobarbituric acid reactive substances assay (TBARS). / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
|
4 |
Antioxidant properties of Lippia javanica (Burm.f.) Spreng. / C. PretoriusPretorius, Corlea January 2010 (has links)
The evolution of aerobic metabolic processes unavoidably led to the production of reactive
oxygen species (ROS). ROS have the ability to cause harmful oxidative damage to
biomolecules. Increased ROS generation and subsequent oxidative stress have been
associated with aging and neurodegenerative disorders such as Parkinson’s and Alzheimer’s
diseases as a result of the extreme sensitivity of the central nervous system to damage from
ROS. Antioxidant defence systems have co–evolved with aerobic metabolic processes to
counteract oxidative damage inflicted by ROS. The impact of neurodegenerative disorders
on society is increasing rapidly as the life expectancy of the global population increases. In
this day and age, a much younger group of the population is also experiencing
neurodegenerative symptoms as a result of the harmful effect of the human
immunodeficiency virus (HIV) on the central nervous system.
Plants are an invaluable source of medicinal compounds. The use of plants for their healing
properties is rooted in ancient times. The aim of this study was to select from twenty one
plants, the plant with the most promising antioxidant activity and to determine whether
extracts of this plant could act as free radical scavengers, comparing the results to Trolox, a
known free radical scavenger. The next step was to isolate and characterize a compound
from an extract exhibiting promising antioxidant activity. Bioassay–guided fractionation was
followed to achieve this.
During screening trials, twenty one plants, namely Berula erecta, Heteromorpha
arborescens, Tarchonanthus camphoratus, Vernonia oligocephala, Gymnosporia buxifolia,
Acacia karroo, Elephantorrhiza elephantina, Erythrina zeyheri, Leonotis leonurus,
Plectranthus ecklonii, P. rehmanii, P. venteri, Salvia auretia, S. runcinata, Solenostemon
latifolius, S. rotundifolius, Plumbago auriculata, Clematis brachiata, Vangueria infausta,
Physalis peruviana and Lippia javanica were selected from literature, based on reported
antioxidant activity within the plant families, for screening of their antioxidant activity. One
hundred and ten extracts were prepared from the leaves, using Soxhlet extraction and the
solvents petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol
(EtOH), consecutively.
The focus during initial screening trials was on chemistry–based assays. The oxygen radical
absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were
employed for the primary screening of the one hundred and ten leaf extracts. The ORAC
assay was used to determine whether the plant extracts were able to scavenge peroxyl
radicals and the FRAP assay was used to determine the reducing abilities of the extracts.
Quantification of the peroxyl radical scavenging activity by the ORAC assay revealed that
activity was observed for most of the extracts, with the ethyl acetate and ethanol extracts of
L. javanica exhibiting the most promising activity. This pattern of activity was also found with the reducing capacity evaluated by the FRAP assay in which the EtOAc and EtOH extracts of
L. javanica also exhibited the most promising activity.
L. javanica was selected for further study by screening for biological activity, employing the
nitro–blue tetrazolium (NBT) assay and thiobarbituric acid reactive substances (TBARS)
assay. Using a cyanide model to induce neurotoxic effects in rat brain homogenate, the
neuroprotective properties of the extracts of L. javanica leaves were examined using the NBT
assay and compared to that of Trolox. The NBT assay determines the level of superoxide
anions. All the extracts of L. javanica significantly reduced superoxide anion generation at all
concentrations used. The petroleum ether and ethyl acetate extracts, at all concentrations,
reduced superoxide anion generation to values lower than that of the control, suggesting that
these extracts may be able to attenuate normal free radical processes in the brain. The
petroleum ether extract exhibited the most promising activity at a concentration of 1.25 and
2.5 mg/ml and also exhibited similar results as the ethyl acetate extract at a lower
concentration than the ethyl acetate extract (2.5 mg/ml compared to 5 mg/ml).
A toxin–solution consisting of hydrogen peroxide (H2O2), iron(III)chloride (FeCl3) and ascorbic
acid was used to induce lipid peroxidation and the ability of the extracts of the leaves of
L. javanica to attenuate lipid peroxidation was investigated in rat brain homogenate and
compared to that of Trolox. All of the extracts of L. javanica significantly attenuated toxininduced
lipid peroxidation at all concentrations used. All of the extracts were also able to
significantly attenuate toxin–induced lipid peroxidation to values lower than that of the control.
These results suggest that all of the extracts of L. javanica possess the ability to attenuate
not only toxin–induced lipid peroxidation, but also lipid peroxidation that occurs during normal
processes in the brain.
The petroleum ether extract was subjected to bioassay–guided fractionation using column
and thin–layer chromatography and the NBT and TBARS assays. Fraction DD1 was
investigated by means of nuclear magnetic resonance, infrared and mass spectrometry. The
exact structure of fraction DD1 was not elucidated.
Considering all the results, it is clear that L. javanica shows great potential as a medicinal
plant with antioxidant activity and may therefore be beneficial in diminishing the destructive
oxidative effects inflicted by free radicals. There are however still many compounds to be
isolated from L. javanica.
Key words: Verbenaceae, Lippia javanica, antioxidant, neurodegeneration, oxygen radical
absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), nitro–blue
tetrazolium assay (NBT), thiobarbituric acid reactive substances assay (TBARS). / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011.
|
Page generated in 0.0835 seconds