Spelling suggestions: "subject:"antwortfunktion"" "subject:"antwortfunktionen""
1 |
Supraleitende Quanten-Interferenz-Filter Josephson-Kontakt-Netzwerke mit eindeutiger Spannungsantwortfunktion /Häußler, Christoph. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Tübingen.
|
2 |
Untersuchung und analytische Modellierung der Systemantwort von pn-CCD-DetektorenPopp, Martin Walter Friedrich. Unknown Date (has links)
Universiẗat, Diss., 2000--München.
|
3 |
Three-dimensional electromagnetic modelling by free-decay mode superpositionStuntebeck, Christiane. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Braunschweig.
|
4 |
Aerodynamische Admittanzansätze zur Böenwirkung auf hohe, schlanke BauwerkeBehrens, Matthias. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Braunschweig.
|
5 |
Komplexe Kontakt- und Materialmodellierung am Beispiel einer DichtungssimulationNagl, Nico 08 May 2014 (has links) (PDF)
In vielen industriellen Anwendungen sind Dichtungen im Einsatz. Vergleicht man den Preis mit dem eines Gesamtsystems, in denen Dichtungen verwendet werden, so sind Dichtungen verhältnismäßig günstig. Jedoch führt ein Versagen von Dichtungen meist zu schwerwiegenden Konsequenzen. Dichtungen sind komplexe Subsysteme und ihre Auslegung erfordert umfangreiche Kenntnisse im Bereich Materialmodellierung, Belastung und Versagenskriterien. Die heutige Simulationstechnologie ermöglicht einen parametrischen Workflow für die Berechnung des Verhaltens von Dichtungen mit den auftretenden Effekten wie nichtlinearem Materialverhalten, wechselnden Kontaktbedingungen und Flüssigkeitsunterwanderung bei Druck. Als ein führendes Simulationswerkzeug für diese physikalische Fragestellung wird ANSYS Mechanical für die Auslegung herangezogen. Desweiteren kann das Verständnis für das Produkt erhöht werden, was zu einer Verbesserung der Funktionalität und der Zuverlässigkeit führt. Versuchsdaten können als Spannungs-Dehnungskurven in ANSYS importiert werden, welche das Materialverhalten des hyperelastischen Werkstoffs mit traditionellen Materialmodellen wie Mooney Rivlin, Ogden and Yeoh oder einer neueren Formulierung, der Antwortfunktionsmethode, widerspiegeln. Robuste Kontakttechnologien beschleunigen die Simulation und Entwicklungszeit-Berechnungszeiten und gewährleisten ein genaues Verhalten des Simulationsmodells. Insbesondere bei Dichtungen ist die druckbeaufschlagte Fläche in 2D und 3D Anwendungen von Bedeutung. ANSYS berechnet diese automatisch in Abhängigkeit des aktuellen Kontaktzustandes. Diese benutzerfreundliche Unterstützung führt zu einer höheren Genauigkeit des Simulationsergebnisses, da ein manuelles Schätzen der Druckflächen entfällt. Mit einem parametrischen und durchgängigen Ansatz innerhalb von ANSYS Workbench, beginnend bei der CAD-Geometrie, über die Vernetzung, Material- und Randbedingungsdefinition und Lösung. können eine Reihe von Varianten in kurzer Zeit berechnet werden. Neben einem besseren Verständnis für das Produkt hilft dies dem Ingenieur Änderungen vorzunehmen, was zu exakten und aussagekräftigen Ergebnissen führt. Desweiteren kann der Einfluss von Unsicherheiten berücksichtigt werden, sodass der Berechnungsingenieur fernab von idealen Bedingungen robuste und zuverlässige Dichtungen entwickeln kann.
|
6 |
Komplexe Kontakt- und Materialmodellierung am Beispiel einer DichtungssimulationNagl, Nico 08 May 2014 (has links)
In vielen industriellen Anwendungen sind Dichtungen im Einsatz. Vergleicht man den Preis mit dem eines Gesamtsystems, in denen Dichtungen verwendet werden, so sind Dichtungen verhältnismäßig günstig. Jedoch führt ein Versagen von Dichtungen meist zu schwerwiegenden Konsequenzen. Dichtungen sind komplexe Subsysteme und ihre Auslegung erfordert umfangreiche Kenntnisse im Bereich Materialmodellierung, Belastung und Versagenskriterien. Die heutige Simulationstechnologie ermöglicht einen parametrischen Workflow für die Berechnung des Verhaltens von Dichtungen mit den auftretenden Effekten wie nichtlinearem Materialverhalten, wechselnden Kontaktbedingungen und Flüssigkeitsunterwanderung bei Druck. Als ein führendes Simulationswerkzeug für diese physikalische Fragestellung wird ANSYS Mechanical für die Auslegung herangezogen. Desweiteren kann das Verständnis für das Produkt erhöht werden, was zu einer Verbesserung der Funktionalität und der Zuverlässigkeit führt. Versuchsdaten können als Spannungs-Dehnungskurven in ANSYS importiert werden, welche das Materialverhalten des hyperelastischen Werkstoffs mit traditionellen Materialmodellen wie Mooney Rivlin, Ogden and Yeoh oder einer neueren Formulierung, der Antwortfunktionsmethode, widerspiegeln. Robuste Kontakttechnologien beschleunigen die Simulation und Entwicklungszeit-Berechnungszeiten und gewährleisten ein genaues Verhalten des Simulationsmodells. Insbesondere bei Dichtungen ist die druckbeaufschlagte Fläche in 2D und 3D Anwendungen von Bedeutung. ANSYS berechnet diese automatisch in Abhängigkeit des aktuellen Kontaktzustandes. Diese benutzerfreundliche Unterstützung führt zu einer höheren Genauigkeit des Simulationsergebnisses, da ein manuelles Schätzen der Druckflächen entfällt. Mit einem parametrischen und durchgängigen Ansatz innerhalb von ANSYS Workbench, beginnend bei der CAD-Geometrie, über die Vernetzung, Material- und Randbedingungsdefinition und Lösung. können eine Reihe von Varianten in kurzer Zeit berechnet werden. Neben einem besseren Verständnis für das Produkt hilft dies dem Ingenieur Änderungen vorzunehmen, was zu exakten und aussagekräftigen Ergebnissen führt. Desweiteren kann der Einfluss von Unsicherheiten berücksichtigt werden, sodass der Berechnungsingenieur fernab von idealen Bedingungen robuste und zuverlässige Dichtungen entwickeln kann.
|
7 |
High Phenotypic Plasticity, but Low Signals of Local Adaptation to Climate in a Large-Scale Transplant Experiment of Picea abies (L.) Karst. in EuropeLiepe, Katharina Julie, van der Maaten, Ernst, van der Maaten-Theunissen, Marieke, Liesebach, Mirko 30 May 2024 (has links)
The most common tool to predict future changes in species range are species distribution models. These models do, however, often underestimate potential future habitat, as they do not account for phenotypic plasticity and local adaptation, although being the most important processes in the response of tree populations to rapid climate change. Here, we quantify the difference in the predictions of future range for Norway spruce, by (i) deriving a classic, occurrence-based species distribution model (OccurrenceSDM), and (ii) analysing the variation in juvenile tree height and translating this to species occurrence (TraitSDM). Making use of 32 site locations of the most comprehensive European trial series that includes 1,100 provenances of Norway spruce originating from its natural and further beyond from its largely extended, artificial distribution, we fit a universal response function to quantify growth as a function of site and provenance climate. Both the OccurrenceSDM and TraitSDM show a substantial retreat towards the northern latitudes and higher elevations (−55 and −43%, respectively, by the 2080s). However, thanks to the species’ particularly high phenotypic plasticity in juvenile height growth, the decline is delayed. The TraitSDM identifies increasing summer heat paired with decreasing water availability as the main climatic variable that restricts growth, while a prolonged frost-free period enables a longer period of active growth and therefore increasing growth potential within the restricted, remaining area. Clear signals of local adaptation to climatic clines spanning the entire range are barely detectable, as they are disguised by a latitudinal cline. This cline strongly reflects population differentiation for the Baltic domain, but fails to capture the high phenotypic variation associated to the geographic heterogeneity in the Central European mountain ranges paired with the species history of postglacial migration. Still the model is used to provide recommendations of optimal provenance choice for future climate conditions. In essence, assisted migration may not decrease the predicted range decline of Norway spruce, but may help to capitalize on potential opportunities for increased growth associated with warmer climates.
|
8 |
Coupled-Cluster in Real SpaceKottmann, Jakob Siegfried 24 August 2018 (has links)
In dieser Arbeit werden Algorithmen für die Berechnung elektronischer Korrelations- und
Anregungsenergien mittels der Coupled-Cluster Methode auf adaptiven Gittern entwickelt
und implementiert. Die jeweiligen Funktionen und Operatoren werden adaptiv durch
Multiskalenanalyse dargestellt, was eine Basissatz unabängige Beschreibung mit kontrollierter
numerischer Genauigkeit ermöglicht. Gleichungen für die Coupled-Cluster Methode
werden in einem verallgemeinerten Rahmen, unabhängig von virtuellen Orbitalen
und globalen Basissätzen, neu formuliert. Hierzu werden die amplitudengewichteten
Anregungen in virtuelle Orbitale ersetzt durch Anregungen in n-Elektronenfunktionen,
welche durch Gleichungen im n-Elektronen Ortsraum bestimmt sind. Die erhaltenen
Gleichungen können, analog zur Basissatz abh¨angigen Form, mit leicht angepasster Interpretation
diagrammatisch dargestellt werden. Aufgrund des singulären Coulomb Potentials
werden die Arbeitsgleichungen mit einem explizit korrelierten Ansatz regularisiert.
Coupled-Cluster singles mit genäherten doubles (CC2) und ähnliche Modelle werden,
für geschlossenschalige Systeme und in regularisierter Form, in die MADNESS Bibliothek
(eine allgemeine Bibliothek zur Darstellung von Funktionen und Operatoren mittels
Multiskalenanalyse) implementiert. Mit der vorgestellten Methode können elektronische
CC2 Paarkorrelationsenergien und Anregungsenergien mit bestimmter numerischer
Genauigkeit unabhängig von globalen Basissätzen berechnet werden, was anhand von
kleinen Molekülen verifiziert wird / In this work algorithms for the computation of electronic correlation and excitation energies
with the Coupled-Cluster method on adaptive grids are developed and implemented.
The corresponding functions and operators are adaptively represented with multiresolution
analysis allowing a basis-set independent description with controlled numerical
accuracy. Equations for the coupled-cluster model are reformulated in a generalized
framework independent of virtual orbitals and global basis-sets. For this, the amplitude
weighted excitations into virtuals are replaced by excitations into n-electron functions
which are determined by projected equations in the n-electron position space. The resulting
equations can be represented diagrammatically analogous to basis-set dependent
approaches with slightly adjusted rules of interpretation. Due to the singular Coulomb
potential, the working equations are regularized with an explicitly correlated ansatz.
Coupled-cluster singles with approximate doubles (CC2) and similar models are implemented
for closed-shell systems and in regularized form into the MADNESS library
(a general library for the representation of functions and operators with multiresolution
analysis). With the presented approach electronic CC2 pair-correlation energies
and excitation energies can be computed with definite numerical accuracy and without
dependence on global basis sets, which is verified on small molecules.
|
Page generated in 0.0872 seconds