• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 16
  • 13
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 170
  • 33
  • 27
  • 26
  • 21
  • 17
  • 16
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

An investigation on the effect of Russian wheat aphid (Diuraphis noxia Kurdjumov) population growth and feeding damage on selected barley (Hordeum vulgare L.) cultivars under ambient and elevated CO2

Sacranie, Sattar Farouk January 2016 (has links)
The Russian wheat aphid (RWA) (Diuraphis noxia Kurdjumov) is a major pest of cultivated small grains. It is particularly devastating because of is high reproductive rate which results in the growth of large populations which become damaging to its host plants. Development of resistant barley (Hordeum vulgare L.) cultivars is complicated as resistance is polygenic. As a result, the industry remains at risk now that the RWA has spread throughout South Africa. It has, as recently as, 2013, been identified in the SW Cape, which was previously geographically isolated. This is South Africa‟s principle barley growing region. Now a potentially huge problem exists. Therefore, it is imperative that an alternative to pesticide use is found. Testing potential innate resistance in barley cultivars is thus, critical. In this thesis, I present data on four barely cultivars where I have examined their resistance/ lack of resistance to three known RWA biotypes, RWASA1, RWASA2 and RWASA3. The barley varieties used were two economically important South African malt barley cultivars (S5 and SSG 564) along with two potentially RWA resistant Afghan accessions (CIho 4125 and CIho 4159). The RWA biotype population growth rates on each of the plants were determined over a 14 day period. The aim was to establish baseline data of the effects of RWA population growth on the host plants under ambient CO2 (380 – 400 ppm) conditions. The extent of RWA feeding damage was investigated at the cell level by examining saliva deposition and cell disruption using Transmission Electron Microscopy; at the tissue/vascular level using fluorescence microscopy, to determine the extent of callose formation; at a whole leaf level by recording percent chlorosis and leaf roll; and finally, at a whole plant level by measuring biomass loss.The experiments were repeated under elevated CO2 (450 ppm) to model any changes in RWA/plant interaction with respect to future climate change. The effects of an elevated CO2 environment and RWA feeding on host plant foliar N and C:N ratio were compared to ambient CO2 conditions, to provide a clearer picture of the potential nutrient drain that a feeding RWA colony exacts on its host. Of the varieties tested, the CIho accessions performed better than the two SA barley cultivars as the CIho accessions appeared to express a mild antibiosis resistance response as RWA populations, particularly those of RWASA1, were smaller than those observed on either S5 or SSG 564. In addition, less damage was evident in the two CIho accessions due to RWA feeding. II RWASA2 was the most virulent of the three RWA biotypes tested, followed by RWASA3 while RWASA1 was the least virulent. Under elevated CO2 conditions, RWA feeding damage was exacerbated but the trend of biotype virulence remained the same. Higher aphid population sizes were recorded under elevated CO2, meant that even the more resistant CIho accessions were overcome by the increased demand made by the larger aphid colonies on the host plants. The % foliar N data showed that under elevated CO2 aphid-free control plants had increased N levels in their leaves. Increased “food” supply (as shown by the increased N levels) therefore allowed significantly larger aphid populations to develop on the plants exposed to elevated CO2, due to improved nutrient status of the phloem sap taken up by RWA. The knock-on effect of a higher aphid population was increased cell disruption as a result of extensive probing, extensive formations of wound callose, with the result that phloem damage impeded nutrient flow through the vascular tissues which contributed to chlorosis and (eventually plant) death. The major conclusion from this study is that even a mild CO2 elevation resulted in an increase aphid population which may pose a severe and very real threat to a barley crop. Therefore, without effort to identify and deploy resistant barley cultivars, it could well be possible that future barley cultivation in South Africa may no longer be viable.
132

Comparative study of the feeding damage caused by the South African biotypes of the Russian wheat aphid (Diuraphis noxia Kurdjumov) on resistant and non-resistant lines of barley (Hordeum vulgare L.)

Jimoh, Mahboob Adekilekun January 2011 (has links)
Cereal crop productivity is hampered when these plants are infested by phloem feeding aphids. A great deal of research has been carried out with the direct aim of a clearer understanding of the mechanism involved in the interaction between aphids and their host plants. Research has directly or indirectly been geared towards enhanced plant productivity and achieving sustainable agriculture. Barley (Hordeum vulgare L.) is an important small grain crop in South Africa, whose crop performance is negatively affected by fluctuations in weather patterns as well as by agricultural pests. One of the insect pests infesting barley is the Russian wheat aphid, Diuraphis noxia Kurdjumov (RWA), of which the two South African biotypes, codenamed RWASA1 and RWASA2, were studied in this thesis. During dry spells, RWA infestation becomes a more serious threat to barley productivity. Resistant plants have been used to combat RWA infestation of small grains. In South Africa, 27 RWA-resistant wheat cultivars are currently used in commercial cultivation, but no resistant barley lines have, unfortunately, been developed, in spite of this grain’s significant economic importance. This informed the study in this thesis, and this interest particularly focussed on three RWA-resistant lines developed by the USDA, testing their performance against South African RWA biotypes, for possible adaptation to South Africa. The aim was thus to examine the plant-aphid interactions, aphid breeding rates, plant damage and sustainability, evidence of resistance or tolerance and finally potential performance under elevated CO2 (a very real climate change threat). Two major avenues of research were undertaken. The first aspect involved examination of structural and functional damage caused by RWASA1 and RWASA2 on the three resistant and a non-resistant line. Aphid population growth and damage symptoms (chlorosis and leaf roll) of infestation by these aphid biotypes were evaluated. This was followed by a structural and functional approach in which the effects of feeding on the transport systems (phloem and xylem) of barley were investigated. Fluorescence microscopy techniques (using aniline blue fluorochrome, a specific stain for callose and 5,6-CFDA, a phloem-mobile probe) were applied to investigate the feeding-related damage caused by the aphids, through an examination of wound callose formation and related to this, the resultant reduction in phloem transport capacity. Transmission electron microscopy (TEM) techniques provided evidence of the extent of the feeding-related cell damage. The second aspect involved a study of the effect of changing CO2 concentrations ([CO2]) on the resistant and susceptible barley cultivars to feeding by the two RWA biotypes. Leaves of plants grown at ambient and two elevated levels of [CO2] were analysed to investigate the effect of changing [CO2] on biomass, leaf nitrogen content and C:N ratio of control (uninfested) and infested plants. The population growth studies showed that the populations of the two RWA biotypes as well as bird cherry-oat aphid (BCA, Rhopalosiphum padi L.) increased substantially on the four barley lines. BCA was included here, as it had been the subject of several previous studies. RWASA2 bred faster than RWASA1 on all lines. The breeding rates of the two RWA biotypes were both suppressed and at near-equivalent levels on the three resistant lines, compared to the non-resistant PUMA. This suggests that the resistant lines possessed an antibiosis resistance mechanism against the feeding aphids. Feeding by the aphids manifested in morphological damage symptoms of chlorosis and leaf roll. The two biotypes inflicted severe chlorosis and leaf roll on the non-resistant PUMA. In the resistant plants, leaf rolling was more severe because of RWASA2 feeding compared to RWASA1 feeding. In contrast, chlorosis symptoms were more severe during RWASA1 feeding than was the case with RWASA2 feeding. Investigation of the effect of aphid feeding on the plants showed that callose was deposited within 24h and that this increased with longer feeding exposure. Wound callose distribution is more extensive in the non-resistant PUMA than in the resistant plants. RWASA2 feeding on the resistant lines caused deposition of more callose than was evident with RWASA1 feeding. During long-term feeding, it was evident that variation in the intensity and amount of wound callose was visible in the longitudinal and transverse veins of the resistant plants. Of the three STARS plants, STARS-9301B had the least callose. Interestingly, wound callose occurred in both resistant and non-resistant plants, in sharp contrast to what has been reported on resistant wheat cultivars that were developed in South Africa. The relative reduction in the wound callose deposited in the resistant line, when compared to the non-resistant lines, suggests the presence of a mechanism in the resistant lines, which may prevent excessive callose formation. Alternatively, the mechanism may stimulate callose breakdown. RWASA2 feeding on the resistant lines deposited more wound callose than RWASA1 feeding. This evidence supports the hypothesis that RWASA2 is a resistance breaking and more aggressive feeder than RWASA1 is; and further underscores the urgent need for development of RWA-resistant barley cultivars. The ultrastructural investigation of the feeding damage showed that the two biotypes caused extensive vascular damage in non-resistant plants. There was extensive and severe cell disruption and often obliteration of cell structure of the vascular parenchyma, xylem and phloem elements. In sharp contrast, among the resistant plants, feeding-related cell damage appeared to be substantially reduced compared to the non-resistant PUMA. Low frequency of damaged cells indicated that majority of the cell components of the vascular tissues were intact and presumed functional. There was evidence of salivary material lining the secondary walls of the vascular tissue, which resulted in severe damage. Within xylem vessels, saliva material impregnated half-bordered pit pairs between the vessels and adjacent xylem parenchyma. This is believed to prevent solute exchange through this interface, thereby inducing leaf stress and vi leaf roll. A notable finding is that RWASA2 effectively induced more cell damage to vascular tissues in the resistant lines than did RWASA1. In general the experimental evidence (see Chapter 5) suggests that the resistant lines are possibly more tolerant (or able to cope with) to RWA feeding. Evidence for this is the reduction of wound callose and at the TEM level, a comparatively less obvious cell damage in the resistant lines, which suggests that they possess antibiosis and tolerance capacity. The apparent reduction of feeding-related cell damage from the TEM study confirmed the disruptive action of the feeding aphids in experiments using the phloem-mobile probe, 5,6-CF. Results showed that feeding by RWASA1 and RWASA2 reducedthe transport functionality of the phloem in all cases, but that RWASA2 feeding caused a more obvious reduction in the rate and distance that 5,6-carboxyfluorescein was transported, than did RWASA1. Investigation of the effect of changing [CO2] on the barley cultivars showed that in the absence of aphids and under elevated CO2 conditions, the plants grew more vigorously. In this series of experiments, the infested plants suffered significant reduction in biomass under ambient (as was expected) and under the two elevated CO2 regimes. Biomass loss was greater at elevated CO2 than under ambient [CO2]. The infested nonresistant PUMA plants showed a more significant biomass loss than did the resistant cultivars. Clearly, the benefits derived from elevated CO2 enrichment was thus redirected to the now-advantaged aphids. Uninfested vii plants showed an increase in leaf nitrogen under the experimental conditions. However, feeding aphids depleted leaf nitrogen content and this was more apparent on plants exposed to RWASA2 than was the case with RWASA1. The end result of this was that C:N ratio of infested plants were higher than uninfested plants. Clearly, the faster breeding rates of the aphids at elevated CO2 caused depletion of N and a resultant deficiency exacerbated chlorosis as well as leaf rolling due to the higher aphid population density under elevated CO2 than at ambient. By 28 days after infestation (DAI), majority of the plants exposed to enriched CO2 treatments had died. A major finding here was thus that although this study demonstrated that elevated CO2 resulted in an increase in biomass, this was detrimentally offset in plants infested by the aphids, with a decline in biomass and loss of functionality leading to plant death at 28DAI. The overriding conclusion from this study is a clear signal that the twin effects of CO2 enrichment (a feature of current climate change) and aphid infestations may precipitate potential grain shortages. A disastrous food security threat looms.
133

Factors affecting the population dynamics of the green peach aphid, Myzus persicae (Sulzer), on flue-cured tobacco in Virginia

Reed, T. David January 1987 (has links)
The temperature-dependent development of red and green morphs of the green peach aphid, Myzus persicae (Sulzer), was compared on flue-cured tobacco, Nicotiana tabacum (L.), at moderate to high constant temperatures in the laboratory. The red morph was found to develop faster and reproduce more than the green morph at temperatures that promoted the most rapid population growth of either morph. In addition, mean longevity of the green morph was increasingly and significantly shorter than the red morph as temperature increased above the mutual optimum temperature (25 °C) for population increase. Study of the growth of GPA populations on commercial flue-cured tobacco farms in Virginia indicated the initial GPA population is highly aggregated. As the population increases, it becomes increasingly more randomly dispersed within the field. The typical pattern of temporal development of GPA was a bimodal distribution with the greater proportion of individuals occurring after topping of the crop. Cumulative proportional population growth models using degree-days were able to adequately describe growth of populations only on individual farms. Study of the within-plant distribution of GPA found that populations developed colonies of greatest intensity on the youngest leaves. The proportion of the total GPA population found on each leaf occurring on the lower leaf surface decreased with ascending leaf position. In addition, the proportion of the total plant population found on the lower leaves was highest as the crop approached the topping stage. / M.S.
134

Effect of predators on population dynamics of green peach aphid on flue-cured tobacco in Virginia

Hamid, Mohd Norowi Bin January 1987 (has links)
The effects of indigenous predators on green peach aphid (GPA), Myzus persicae (Sulzer), populations on flue-cured tobacco were evaluated in 1985 and 1986. The most common GPA predators found on tobacco were convergent lady beetle (CLB) (Hippodamia convergens), syrphid flies, Geocoris spp., Jalysus wackhimi, Nabis spp., Chrysopa spp., Micromus sp., and several other species coccinellids. However, CLB was the only predator that had a numerical response to increasing GPA density on tobacco. In the laboratory, the minimum number of GPA required to initiate reproduction in CLB, and the conversion rates were two factors that determined the oviposition rate of CLB. In fields, CLB demonstrated a sigmoid curve predator-prey relationship. CLB did not show a linear relationship until GPA populations reached a certain density. Furthermore, CLB did not show a response when GPA density was above the satiation point. Although CLB were able to reduce GPA population growth, they were not able to maintain GPA populations below the economic injury level. Two factors probably limited the success of CLB to control GPA populations on flue-cured tobacco: 1.) the glandular trichomes of tobacco which produced gummy exudates, and 2.) the satiation point of CLB when GPA populations were very high. In addition, interplanting tobacco with clover increased the number of syrphid fly larvae on tobacco. Likewise, tobacco interplanted with sunflowers had increased big-eyed bug, populations, and tobacco-alfalfa and tobacco-tobacco plots had higher stilt bug populations on tobacco. / Master of Science
135

SEASONAL POPULATION TRENDS OF BLACKMARGINED APHID (MONELLIA CARYELLA) AND GREEN LACEWING (CHRYSOPA CARNEA) ON ALDICARB TREATED AND UNTREATED PECAN TREES IN SOUTHEASTERN ARIZONA.

Nowell, Catherine Ellen. January 1983 (has links)
No description available.
136

Différenciation génétique et écologique au sein des populations du puceron Brachycaudus helichrysi (Hemiptera Aphididae) : mise en évidence de deux espèces soeurs au cycles de vie contrastés / Genetic and ecological differentiation among aphid populations of Brachycaudus helichrysi (Hemiptera Aphididae) : an evidence of two sibling species with contrasted life cycles

Piffaretti, Joséphine 30 November 2012 (has links)
Brachycaudus helichrysi est un puceron ravageur des cultures qui inflige de sérieux dégâts à ses hôtes primaires (arbres fruitiers du genre Prunus) ainsi qu'à plusieurs herbacées cultivées correspondant à ses hôtes secondaires (par exemple les tournesols et les chrysanthèmes).L'étude phylogéographique de l'espèce basée sur un échantillonnage mondial, montre que B. helichrysi rassemble deux taxa appelés B. helichrysi H1 et H2. Cette étude, basée sur plusieurs marqueurs génétiques (mitochondriaux, nucléaire et bactériens), révèle une divergence génétique de l'ordre de celle observée entre espèce du genre Brachycaudus. Ceci suggère que B. helichrysi H1 et H2 sont deux espèces sœurs. Comme H1 et H2 sont morphologiquement indistinguables, nous avons mis au point un test de discrimination génétique par PCR-RFLP.L'analyse des génotypes (14 loci microsatellites) combinés aux données écologiques suggère que ces deux espèces sœurs ont des histoires évolutives différentes. Le cycle de vie de B. helichrysi H1 correspondrait à la parthénogenèse cyclique, utilisant les pruniers comme hôte primaire. Nous avons montré qu'il existe chez H1 des clusters génétiques structurés géographiquement. Au contraire, B. helichrysi H2 rassemble principalement des lignées clonales polyphages, persistantes et largement distribuées dans le monde (i.e. superclones), ainsi qu'une lignée sexuée, probablement hétéroécique, qui a été trouvée sur pêchers en Inde. Les individus des deux espèces colonisent fréquemment une même plante herbacée, composant ainsi des colonies « mixtes ». Cette étude apportera un éclairage sur comment l'évolution des cycles de vie, en particulier la perte de la reproduction sexuée, a pu jouer un rôle dans les processus de spéciation au sein du complexe B. helichrysi / Brachycaudus helichrysi is a worldwide polyphagous aphid pest that seriously damages its primary hosts (Prunus spp.) and the various cultivated plants among its secondary hosts (e.g. sunflower, chrysanthemums).In a phylogeographic study based on a worldwide sampling, I have shown that this species is actually an amalgamation of two sibling taxa called B. helichrysi H1 and B. helichrysi H2. This study based on mitochondrial, nuclear and Buchnera aphidicola (the primary symbiont of aphids) DNA markers revealed that these two taxa display levels of genetic divergence as great as those generally found between sister species in the Brachycaudus genus, suggesting that they actually correspond to two distinct sibling species. As these two species are morphologically indistinguishable, we developed a PCR-RFLP test to genetically discriminate them.Further investigations, based on microsatellites data combined with ecological information suggest that these two species have two very different evolutionary histories. Brachycaudus helichrysi H1 exhibits a typical signature of cyclical parthenogenesis, using plum trees during the sexual phase, and we demonstrate the existence of distinct geographic genetic clusters within this species. By contrast B. helichrysi H2 comprises two types of lineages. First, it gathers several persistent obligate clonal lineages distributed worldwide (i.e. superclones) and highly polyphagous, and second, we reveal the existence of a cyclical parthenogenetic H2 lineage that uses peach trees as primary hosts and has so far only been found in India. All B. helichrysi lineages of H1 and H2 co-occurred in mixed colonies on herbaceous hosts all around the world.This study will shed light on how life cycle evolution, especially the loss of sexual reproduction, could explain the ongoing speciation process in the B. helichrysi species complex.
137

Influence of plant architecture on tritrophic interactions between winter canola (Brassicae napus), Aphids (Hemiptera: Aphididae) and Hippodamia convergens (Coleoptera: Coccinellidae)

Cibils-Stewart, Ximena January 1900 (has links)
Master of Science / Department of Entomology / Brian P. McCornack / Winter canola production in the south-central US is commonly threatened by a complex of aphid species that can cause up to 70% in yield loss. Aphid species vary in their life-history traits, performance (sequestration/excretion of secondary compounds; glucosinolates), vertical distribution within the plant, and temporal dynamics across the growing season. Colonizing behavior of these aphids may be affected by intrinsic characteristics of the host plant (bottom-up effects), such as nutritional value, secondary compounds, or plant architecture. Understanding bottom-up effects may enable the evaluation of plant-level interactions that are influencing predator-prey dynamics. The goal of my research project is to understand aphid population dynamics in different canola plant structures, assess whether aphid quality (sequestration/ excretion of glucosinolates) is influenced by feeding location on the canola plant, and if so, assess the impact on the existing predator communities, specifically the development and fitness of immature and adult Hippodamia convergens. A combination of filed and greenhouse experiments provided novel contributions that will help shape our understanding of key factors regulating aphid population growth in canola fields, which will lead to more judicious use of insecticides and better sampling strategies.
138

Dinâmica de predação e resposta funcional em Chrysoperla externa (Neuroptera: Chrysopidae) sobre Toxoptera citricida (Hemiptera: Aphididae) aplicada à citricultura orgânica / Dynamics of predation and functional response in Chrysoperla externa (Neuroptera: Chrysopidae) on Toxoptera citricida (Hemiptera: Aphididae) applied to organic citrus

Battel, Ana Paula Magalhães Borges 20 January 2012 (has links)
A citricultura orgânica Brasileira tem se destacado no mercado internacional no tocante às exportações de suco e concentrado de laranja, polpa peletizada para alimentação animal e óleos para indústria química e farmacêutica. A calda sulfocálcica vem sendo empregada como produto alternativo para a agricultura orgânica em razão da sua baixa toxicidade se comparada aos inseticidas sintéticos frequentemente usados na agricultura convencional. O presente estudo teve como objetivo avaliar o desempenho de C. externa como predadora de T. citricida em citros tratado com calda sulfocálcica em diferentes concentrações. Especificamente, foi investigada a dinâmica de predação de C. externa sobre T. citricida considerando a inclusão de predadores e presas em citros tratados com calda sulfocálcica. A resposta funcional de C. externa sobre T. citricida também foi analisada com base na teoria ecológica e aplicação de funções não-lineares. A proposta de um modelo matemático para descrever a ação da calda sulfocálcica sobre o sistema trófico foi também incluída no estudo. Dos resultados encontrados pode-se concluir que a concentração de enxofre em 6000 g/mL pode ser prejudicial ao desenvolvimento do crisopídeo, diminuindo significativamente a viabilidade da população. Entretanto, a calda sulfocálcica não altera a capacidade predatória do crisopídeo. No que diz respeito à T. citricida, não parece ser atingida pelas formulações da calda sulfocálcica e também não parece ser presa atrativa ao predador. A regressão logística polinomial indicou resposta funcional do tipo II, caracterizada por uma assíntota que exibe saturação em densidades mais elevadas, tanto para o experimento com a aplicação de calda sulfocálcica quanto para a testemunha. O processo de modelagem resultou em equações em tempo discreto para avaliar o efeito da concentração da calda sulfocálcica sobre a dinâmica predador-presa das espécies envolvidas no estudo. Os resultados obtidos pelas simulações descrevem adequadamente o que foi encontrado nos experimentos, o que sugere boa acurácia dos modelos ao problema investigado. Este tipo de resultado motiva a continuidade dos estudos com foco em modelagem, com vistas ao aperfeiçoamento do modelo. / The Brazilian organic citrus has distinguished itself in the international market as regards to exports of concentrated orange juice, pelletized pulp for animal feeding and oils for chemical and pharmaceutical industry. The lime sulphur has been employed as an alternative product for organic agriculture because of its low toxicity, when compared to synthetic insecticides commonly used in conventional agriculture. This study aimed to evaluate the performance of Chrysoperla externa on its prey Toxoptera citricida in citrus, where lime sulfur was applied in three different concentrations. Specifically, the predation dynamics of C. externa on T. citricida was investigated considering the inclusion of predators and prey in citrus previously treated with lime sulfur. The functional response of C. externa on T. citricida was analyzed based on ecological theory relying on the use of non-linear functions. A mathematical model to describe the action of lime sulphur on the trophic system was also proposed. The results suggest that the concentration of sulphur in 6000 g/mL can be detrimental to the development of green lacewing, significantly reducing the viability of its population. The lime sulphur does not change the predatory ability of the green lacewing. With respect to T. citricida does not seem to be attained by lime sulfur and to show enough attractiveness for the predators larvae development. Polynomial logistic regression indicated type II functional response, which is characterized by an asymptote that exhibits saturation in higher densities for both lime sulphur applied citrus and control citrus. The modeling process resulted in discrete-time equations to evaluate the effect of concentration of lime sulphur on the dynamics of the system. The results obtained by simulations are suitable description for the results experimental found. This suggest a good accuracy of the models to the problem. This kind of result encourage new studies focused on modeling and improvement of the model.
139

Effekte einer reduzierten Dosis von Pflanzenschutzmitteln auf tritrophische Systeme im Ackerbau / Effects of reduced pesticide dose on tritrophic systems in agriculture

Schumacher, Kerstin January 2007 (has links)
Chemische Pflanzenschutzmittel (PSM) bekämpfen nicht nur Schadorganismen, sondern haben aufgrund ihrer hohen Toxizität auch negative Auswirkungen auf Nicht-Ziel-Organismen. Die Fragestellung der Arbeit war es, ob mit reduzierten Anwendungen von PSM ihr Gefährdungspotenzial für Prädatoren von Schädlingen verringert und dadurch das Potenzial der natürlichen Schädlingsregulation erhöht wird. In dreijährigen Freilanduntersuchungen wurden die Effekte einer dauerhaft reduzierten Dosis von chemischen PSM auf die ökologische Situation im Ackerbau anhand von drei Fallbeispielen in einem konventionell bewirtschafteten Betrieb in der Magdeburger Börde untersucht. Drei über 15 ha große Felder wurden dauerhaft in zwei Teilflächen geteilt, wobei eine Teilfläche mit der vom Landwirt gewünschten Dosis (100 %-Variante) und die andere mit jeweils genau der halben Dosis (50 %-Variante) behandelt wurde. Mittels dieser Halbfelder-Vergleiche wurden die ökologischen Situationen bezüglich des Auftretens von Blattläusen und ihren Prädatoren sowie Unkräutern vor und nach der jeweiligen PSM-Behandlung aufgenommen und ökonomische Parameter ermittelt. Ergänzend wurden im Labor Modellgefäßversuche mit abgestuften Dosierungen von Insektiziden und Herbiziden durchgeführt. Die Insektizidbehandlung übte einen großen Einfluss auf die Blattläuse und ihre Prädatoren aus, während alle vorherigen Herbizid- und Fungizidbehandlungen zu keinen Unterschieden in der Abundanz der Blattläuse und ihrer Prädatoren zwischen beiden Varianten hervorriefen. Die reduzierte Insektiziddosis führte zu keiner guten Blattlauskontrolle, während die Abundanz der blattlausspezifischen Prädatoren positiv beeinflusst wurde. Die Araneae reagierten auf die reduzierte Dosis mit einer teilweise erhöhten Aktivitätsdichte und Artendiversität. Dagegen waren diesbezüglich keine eindeutigen Effekte auf die Carabidae festzustellen. Es traten keine strukturellen Veränderungen in Form einer erhöhten Unkrautdichte durch die reduzierte Herbiziddosis auf. Erste Hinweise auf mögliche langfristige Auswirkungen einer dauerhaft reduzierten PSM-Anwendung konnten nur bei der Verunkrautung und der Aktivitätsdichte der Araneae beobachtet werden. Blattläuse profitierten demnach mehr von der reduzierten Anwendung der PSM als ihre Prädatoren, so dass zwar das Potenzial der natürlichen Blattlausregulation erhöht, die Selbstregulation aber nicht verbessert wurde. Die geschonten Prädatoren schafften es nicht, die vorhandene Restpopulation der Blattläuse zu reduzieren. Dagegen konnte in den Laborversuchen gezeigt werden, das schon bei deutlich reduzierten Insektiziddosen eine ausreichende Blattlausbekämpfung möglich ist und eine weitere Einsparung durch Ausnutzung der natürlichen Regulation durch Prädatoren erreicht werden kann. Allerdings ist eine Übertragung der Ergebnisse von Laboruntersuchungen auf Freilandbedingungen schwierig. Es kann zu einer Überschätzung der Prädatorleistung führen. / Pesticide application in order to control pest populations can also affects non-target organisms such as beneficials. Thus, effects of low-input pesticide use on the tritrophic system crop – aphid – predator were investigated in field and laboratory studies. The hypothesis was: 50% doses of pesticides, particularly insecticides, permanently conserves beneficials, improves natural control and enhances biodiversity in fields. The field study was carried out in a conventional farm in an intensive cropping region of Central Germany (Magdeburger Boerde) from 2004-2006 using half-field comparisons. Three fields (≥15 ha) were divided into two halves during the whole period of investigation representing low- and high-input variants. One half was treated by permanently 50% reduced pesticide doses, whereas the other one was characterised by good plant protection practise (100%). To determine ecological effects of a low-input plant protection strategy, abundances of aphids and their predators as well as of weeds were investigated before and after pesticide applications.In adddition, economic parameters were determined. Insecticide treatment caused greatest effect on aphids and their predators, whereas fungicide and herbicide applications did not affect their abundances. The reduced insecticide dose did not lead to a good aphid control, but the abundance of aphid specific predators was positive affected and Araneae showed enhanced activity density and diversity by the low-input insecticide use. No clear effect of reduced insecticides use on abundance, structure of dominance, and diversity of carabids could be observed. No structural changes in terms of an increased density of weeds were found. Accumulative effects of reduced pesticide use could only be observed concerning weed density and activity density of Araneae after three years. It is concluded, that aphids profit more from reduced pesticide dose than their predators. The increased predator potential did not lead to a better natural control because of higher relative survival rate of aphids in the 50%-variant. In contrast to the field study, in laboratory aphids could be sufficiently reduced by low-input insecticide doses. In some cases the dose of insecticide could be reduced even more by utilisation of the predator potential to receive a good pest control. But it is difficult to transfer the results of laboratory studies to field conditions. It could result in an overestimation of the potential of natural regulation by a predator.
140

Climate-induced changes to multi-trophic interactions in an agroecosystem

Romo, Cecilia Marie January 2012 (has links)
Our earth is currently undergoing unprecedented human induced climate change, which is expected to drive widespread changes in species distributions and abundances that will affect natural pest suppression. Recent studies have suggested that climate change may cause changes to predator and herbivore assemblages in ways that alter multi-trophic food webs and affect the stability of ecosystems. Moreover, higher temperatures and increased climatic variability are expected to induce differential responses from predators and their prey that will undoubtedly disrupt species interactions. This thesis aims to test how climate change will impact the ability of natural enemies to continue to control pests in agroecosystems, and how they will continue to survive and function. In a field experiment using 13 farm sites across a natural temperature gradient, I found that temperature had direct positive effects on the abundances of the dominant parasitoid (an aphid specialist) and hyperparasitoid species, highlighting the importance of specific species responses in shaping larger communities. I also found that overall community composition was affected by temperature, with composition in warmer sites changing more throughout the season than cooler sites. In a future of inevitable climatic changes this result tells us we can expect arthropod community structure to change, which will have questionable impacts on overall population dynamics. To build on the field experiments, I used laboratory experiments to test differential responses of species to both drought and temperature and found that natural enemies responded to drought and temperature in a non-additive way, suggesting that the interaction between various climate change drivers is more important than their singular effect. Also, different species of natural enemies responded differently to abiotic factors, highlighting the importance of conserving natural enemies that can maintain important functional attributes in the face of climate change. Although biodiversity can be important for ensuring ecosystem functioning, response diversity, rather than species richness, may better promote ecosystem resilience, especially in the face of changing climate. The mechanisms underlying biodiversity effects are often difficult to disentangle, however, by manipulating the diversity of climate responses exhibited by ecosystem service providers, I tested how the rates and stability of prey suppression by predators are affected by climate warming and drought. I found that predator combinations with different individual responses to climate change maintained greater and less variable (i.e. more stable) prey suppression, compared with single predator species or combinations of predators with similar climate responses. This response complementarity became strongest through time and under drought or high temperature treatments. I suggest that response complementarity provides ‘insurance’ effects, which may be more important than previously envisaged for maintaining ecosystem functions such as biological control under global environmental change. Overall, the non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggests that predicting future pest outbreaks will be more challenging than previously imagined.

Page generated in 0.0361 seconds