Spelling suggestions: "subject:"appearance models"" "subject:"ppearance models""
1 |
Layered Deformotion with Radiance: A Model for Appearance, Segmentation, Registration, and TrackingJackson, Jeremy D. 09 July 2007 (has links)
This dissertation gives a general model for the estimation of
shape (image segmentation), appearance, pose (image registration), and
movement (tracking). The model can infer parameters for
multiple objects in a dynamically changing scene.
There are a number of real-world applications.
In particular, in visual tracking, moving the camera to keep
objects of interest in the field of view may
cause the background to move. The objects can
move and deform in three dimensions, but they must be captured in
two-dimensional images.
Each component of the image is represented by
a separate layer: one for the background and a layer for
each foreground object. Each layer has three components: a contour that bounds
the region of the layer, a smooth function that represents the object's
appearance, and a transformation that maps that layer into an image.
The segmentation for each layer is a contour
(embedded as the zero level set of a distance function)
that is the average shape of the object computed from multiple images. The
smooth function associated with a layer approximates the image data inside the
contour, after the contour has been mapped into the image by a
similarity transformation (rigid component) plus a vector field (non-rigid
component). A practical application of having this model is that
one can fix the size of a layer and then construct priors
on both shape and appearance for that layer. These priors are
constructed using principal components analysis (PCA),
which reduces the dimensionality of the
image-approximating smooth function and the vector field (non-rigid
registration) and allows for more accurate modeling of an object
for that layer.
|
2 |
Stochastic visual tracking with active appearance modelsHoffmann, McElory Roberto 12 1900 (has links)
Thesis (PhD (Applied Mathematics))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: In many applications, an accurate, robust and fast tracker is needed, for example in surveillance,
gesture recognition, tracking lips for lip-reading and creating an augmented reality by embedding
a tracked object in a virtual environment. In this dissertation we investigate the viability of a
tracker that combines the accuracy of active appearancemodels with the robustness of the particle
lter (a stochastic process)—we call this combination the PFAAM. In order to obtain a fast system,
we suggest local optimisation as well as using active appearance models tted with non-linear
approaches.
Active appearance models use both contour (shape) and greyscale information to build a
deformable template of an object. ey are typically accurate, but not necessarily robust, when
tracking contours. A particle lter is a generalisation of the Kalman lter. In a tutorial style,
we show how the particle lter is derived as a numerical approximation for the general state
estimation problem. e algorithms are tested for accuracy, robustness and speed on a PC, in an embedded
environment and by tracking in ìD. e algorithms run real-time on a PC and near real-time in
our embedded environment. In both cases, good accuracy and robustness is achieved, even if the
tracked object moves fast against a cluttered background, and for uncomplicated occlusions. / AFRIKAANSE OPSOMMING: ’nAkkurate, robuuste en vinnige visuele-opspoorderword in vele toepassings benodig. Voorbeelde
van toepassings is bewaking, gebaarherkenning, die volg van lippe vir liplees en die skep van ’n
vergrote realiteit deur ’n voorwerp wat gevolg word, in ’n virtuele omgewing in te bed. In hierdie
proefskrif ondersoek ons die lewensvatbaarheid van ’n visuele-opspoorder deur die akkuraatheid
van aktiewe voorkomsmodellemet die robuustheid van die partikel lter (’n stochastiese proses) te
kombineer—ons noem hierdie kombinasie die PFAAM. Ten einde ’n vinnige visuele-opspoorder
te verkry, stel ons lokale optimering, sowel as die gebruik van aktiewe voorkomsmodelle wat met
nie-lineêre tegnieke gepas is, voor.
Aktiewe voorkomsmodelle gebruik kontoer (vorm) inligting tesamemet grysskaalinligting om
’n vervormbaremeester van ’n voorwerp te bou. Wanneer aktiewe voorkomsmodelle kontoere volg,
is dit normaalweg akkuraat,maar nie noodwendig robuust nie. ’n Partikel lter is ’n veralgemening van die Kalman lter. Ons wys in tutoriaalstyl hoe die partikel lter as ’n numeriese benadering tot
die toestand-beramingsprobleem afgelei kan word.
Die algoritmes word vir akkuraatheid, robuustheid en spoed op ’n persoonlike rekenaar, ’n
ingebedde omgewing en deur volging in ìD, getoets. Die algoritmes loop intyds op ’n persoonlike
rekenaar en is naby intyds op ons ingebedde omgewing. In beide gevalle, word goeie akkuraatheid
en robuustheid verkry, selfs as die voorwerp wat gevolg word, vinnig, teen ’n besige agtergrond
beweeg of eenvoudige okklusies ondergaan.
|
3 |
Rozpoznávání výrazu tváře / Facial Expression RecognitionKrál, Jiří Unknown Date (has links)
Many views to facial expression recognition exist. This work presents one of approaches. Existing methods of human face representation by model are discussed. The AAM method, where final appearance model is created from model of shape and model of texture is proposed. Model of shape and model of texture is created by statistic analysis. Using this representation, an effective method is achieved that is complexity of information for searched face in static image. Choice and combination of suitable features for classification of facial expression is principle for facial expression recognition based on AAM. Two approaches of facial expression classification are compared. Classification based on LDA and classification based on SVM. These methods with necessary face localization using AdaBoost form an automated face recognizer in image.
|
4 |
Model-based understanding of facial expressionsSauer, Patrick Martin January 2013 (has links)
In this thesis we present novel methods for constructing and fitting 2d models of shape and appearance which are used for analysing human faces. The first contribution builds on previous work on discriminative fitting strategies for active appearance models (AAMs) in which regression models are trained to predict the location of shapes based on texture samples. In particular, we investigate non-parametric regression methods including random forests and Gaussian processes which are used together with gradient-like features for shape model fitting. We then develop two training algorithms which combine such models into sequences, and systematically compare their performance to existing linear generative AAM algorithms. Inspired by the performance of the Gaussian process-based regression methods, we investigate a group of non-linear latent variable models known as Gaussian process latent variable models (GPLVM). We discuss how such models may be used to develop a generative active appearance model algorithm whose texture model component is non-linear, and show how this leads to lower-dimensional models which are capable of generating more natural-looking images of faces when compared to equivalent linear models. We conclude by describing a novel supervised non-linear latent variable model based on Gaussian processes which we apply to the problem of recognising emotions from facial expressions.
|
5 |
Automatic age progression and estimation from facesBukar, Ali M. January 2017 (has links)
Recently, automatic age progression has gained popularity due to its numerous applications. Among these is the frequent search for missing people, in the UK alone up to 300,000 people are reported missing every year. Although many algorithms have been proposed, most of the methods are affected by image noise, illumination variations, and facial expressions. Furthermore, most of the algorithms use a pattern caricaturing approach which infers ages by manipulating the target image and a template face formed by averaging faces at the intended age. To this end, this thesis investigates the problem with a view to tackling the most prominent issues associated with the existing algorithms. Initially using active appearance models (AAM), facial features are extracted and mapped to people’s ages, afterward a formula is derived which allows the convenient generation of age progressed images irrespective of whether the intended age exists in the training database or not. In order to handle image noise as well as varying facial expressions, a nonlinear appearance model called kernel appearance model (KAM) is derived. To illustrate the real application of automatic age progression, both AAM and KAM based algorithms are then used to synthesise faces of two popular long missing British and Irish kids; Ben Needham and Mary Boyle. However, both statistical techniques exhibit image rendering artefacts such as low-resolution output and the generation of inconsistent skin tone. To circumvent this problem, a hybrid texture enhancement pipeline is developed. To further ensure that the progressed images preserve people’s identities while at the same time attaining the intended age, rigorous human and machine based tests are conducted; part of this tests resulted to the development of a robust age estimation algorithm. Eventually, the results of the rigorous assessment reveal that the hybrid technique is able to handle all existing problems of age progression with minimal error. / National Information Technology Development Agency of Nigeria (NITDA)
|
6 |
Whiteness and Fluorescence in Paper : Perception and Optical ModellingGustafsson Coppel, Ludovic January 2010 (has links)
This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This includes psycho-physical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition. Existing models are first tested and improvements are suggested and evaluated. The standardised and widely used CIE whiteness equation is first tested on commercial office papers with visual evaluations by different panels of observers, and improved models are validated. Simultaneous contrast effects, known to affect the appearance of coloured surfaces depending on the surrounding colour, are shown to significantly affect the perceived whiteness. A colour appearance model including simultaneous contrast effects (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. A recently proposed extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness. It is shown that the quantum efficiency of two different fluorescent whitening agents (FWA) in plain paper is rather constant with FWA type, FWA concentration, filler content, and fibre type. Hence, the fluorescence efficiency is essentially dependent only on the ability of the FWA to absorb light in its absorption band. Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness. In addition, a modular Monte Carlo simulation tool, Open PaperOpt, is developed to allow future spatial- and angle-resolved particle level light scattering simulation. / PaperOpt
|
7 |
Multi-Object modelling of the face / Modélisation Multi-Objet du visageSalam, Hanan 20 December 2013 (has links)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l’analyse faciale.Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d’Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées.La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions.Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d’Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux.Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l’AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche. / The work in this thesis deals with the problematic of face modeling for the purpose of facial analysis.In the first part of this thesis, we proposed the Multi-Object Facial Actions Active Appearance Model (AAM). The specificity of the proposed model is that different parts of the face are treated as separate objects and eye movements (gaze and blink) are extrinsically parameterized. This increases the generalization capabilities of classical AAM.The second part of the thesis concerns the use of face modeling in the context of expression and emotion recognition. First we have proposed a system for the recognition of facial expressions in the form of Action Units (AU). Our contribution concerned mainly the extraction of AAM features of which we have opted for the use of local models.The second system concerns multi-modal recognition of four continuously valued affective dimensions. We have proposed a system that fuses audio, context and visual features and gives as output the four emotional dimensions. We contribute to the system by finding the precise localization of the facial features. Accordingly, we propose the Multi-Local AAM. This model combines extrinsically a global model of the face and a local one of the mouth through the computation of projection errors on the same global AAM.
|
8 |
Bayes Optimality in Classification, Feature Extraction and Shape AnalysisHamsici, Onur C. 11 September 2008 (has links)
No description available.
|
9 |
Non-linear dimensionality reduction and sparse representation models for facial analysis / Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l’analyse du visageZhang, Yuyao 20 February 2014 (has links)
Les techniques d'analyse du visage nécessitent généralement une représentation pertinente des images, notamment en passant par des techniques de réduction de la dimension, intégrées dans des schémas plus globaux, et qui visent à capturer les caractéristiques discriminantes des signaux. Dans cette thèse, nous fournissons d'abord une vue générale sur l'état de l'art de ces modèles, puis nous appliquons une nouvelle méthode intégrant une approche non-linéaire, Kernel Similarity Principle Component Analysis (KS-PCA), aux Modèles Actifs d'Apparence (AAMs), pour modéliser l'apparence d'un visage dans des conditions d'illumination variables. L'algorithme proposé améliore notablement les résultats obtenus par l'utilisation d'une transformation PCA linéaire traditionnelle, que ce soit pour la capture des caractéristiques saillantes, produites par les variations d'illumination, ou pour la reconstruction des visages. Nous considérons aussi le problème de la classification automatiquement des poses des visages pour différentes vues et différentes illumination, avec occlusion et bruit. Basé sur les méthodes des représentations parcimonieuses, nous proposons deux cadres d'apprentissage de dictionnaire pour ce problème. Une première méthode vise la classification de poses à l'aide d'une représentation parcimonieuse active (Active Sparse Representation ASRC). En fait, un dictionnaire est construit grâce à un modèle linéaire, l'Incremental Principle Component Analysis (Incremental PCA), qui a tendance à diminuer la redondance intra-classe qui peut affecter la performance de la classification, tout en gardant la redondance inter-classes, qui elle, est critique pour les représentations parcimonieuses. La seconde approche proposée est un modèle des représentations parcimonieuses basé sur le Dictionary-Learning Sparse Representation (DLSR), qui cherche à intégrer la prise en compte du critère de la classification dans le processus d'apprentissage du dictionnaire. Nous faisons appel dans cette partie à l'algorithme K-SVD. Nos résultats expérimentaux montrent la performance de ces deux méthodes d'apprentissage de dictionnaire. Enfin, nous proposons un nouveau schéma pour l'apprentissage de dictionnaire adapté à la normalisation de l'illumination (Dictionary Learning for Illumination Normalization: DLIN). L'approche ici consiste à construire une paire de dictionnaires avec une représentation parcimonieuse. Ces dictionnaires sont construits respectivement à partir de visages illuminées normalement et irrégulièrement, puis optimisés de manière conjointe. Nous utilisons un modèle de mixture de Gaussiennes (GMM) pour augmenter la capacité à modéliser des données avec des distributions plus complexes. Les résultats expérimentaux démontrent l'efficacité de notre approche pour la normalisation d'illumination. / Face analysis techniques commonly require a proper representation of images by means of dimensionality reduction leading to embedded manifolds, which aims at capturing relevant characteristics of the signals. In this thesis, we first provide a comprehensive survey on the state of the art of embedded manifold models. Then, we introduce a novel non-linear embedding method, the Kernel Similarity Principal Component Analysis (KS-PCA), into Active Appearance Models, in order to model face appearances under variable illumination. The proposed algorithm successfully outperforms the traditional linear PCA transform to capture the salient features generated by different illuminations, and reconstruct the illuminated faces with high accuracy. We also consider the problem of automatically classifying human face poses from face views with varying illumination, as well as occlusion and noise. Based on the sparse representation methods, we propose two dictionary-learning frameworks for this pose classification problem. The first framework is the Adaptive Sparse Representation pose Classification (ASRC). It trains the dictionary via a linear model called Incremental Principal Component Analysis (Incremental PCA), tending to decrease the intra-class redundancy which may affect the classification performance, while keeping the extra-class redundancy which is critical for sparse representation. The other proposed work is the Dictionary-Learning Sparse Representation model (DLSR) that learns the dictionary with the aim of coinciding with the classification criterion. This training goal is achieved by the K-SVD algorithm. In a series of experiments, we show the performance of the two dictionary-learning methods which are respectively based on a linear transform and a sparse representation model. Besides, we propose a novel Dictionary Learning framework for Illumination Normalization (DL-IN). DL-IN based on sparse representation in terms of coupled dictionaries. The dictionary pairs are jointly optimized from normally illuminated and irregularly illuminated face image pairs. We further utilize a Gaussian Mixture Model (GMM) to enhance the framework's capability of modeling data under complex distribution. The GMM adapt each model to a part of the samples and then fuse them together. Experimental results demonstrate the effectiveness of the sparsity as a prior for patch-based illumination normalization for face images.
|
Page generated in 0.0557 seconds