• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 1
  • Tagged with
  • 285
  • 285
  • 285
  • 282
  • 282
  • 282
  • 281
  • 281
  • 281
  • 281
  • 203
  • 107
  • 107
  • 107
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The fluvial geochemistry of the rivers of Eastern Siberia and implications for the effect of climate on weathering

Huh, Youngsook January 1998 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1998. / Includes bibliographical references. / by Youngsook Huh. / Ph.D.
162

The geochemistry of methane isotopologues

Wang, David Texan January 2017 (has links)
Thesis: Ph.D. in Geochemistry, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 123-143). / This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of ¹²CH₄, ¹³CH₄, ¹²CH₃D, and ¹³CH₃D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of ¹³CH₃D, a "clumped" isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of ¹³CH₃D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H₂ and the reversibility of microbially-mediated methanogenesis in the environment. Determination of ¹³CH₃D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C-H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 °C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O₂ by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of ¹³C/¹²C and D/H isotope fractionation factors alone. / by David Texan Wang. / Ph.D. in Geochemistry
163

Observations and modeling of wave-acceleration-induced sediment transport in the surfzone

Hoefel, Fernanda Gemael, 1973- January 2004 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2004. / Includes bibliographical references. / Onshore sediment transport and sandbar migration are important to the morphological evolution of beaches, but are not understood well. Here, a new model that accounts for accelerations of wave-orbital velocities predicts onshore sandbar migration observed on an ocean beach. In both the observations and the model, the location of the maximum acceleration-induced transport moves shoreward with the sandbar, resulting in feedback between waves and morphology that drives the bar shoreward until conditions change. A model that combines the effects of transport by waves and mean currents simulates both onshore and offshore bar migration observed over a 45-day period. A stochastic nonlinear Boussinesq model for the evolution of waves in shallow water is coupled with the wave-acceleration-driven sediment transport model to predict observed onshore sediment transport and sandbar migration given observations of the offshore wave field and initial bathymetry. The Boussinesq-wave model has skill in predicting wave spectra, as well as velocity and acceleration statistics across the surfzone, but it underpredicts acceleration skewness on top of the sandbar. As a result, the coupled wave-sediment transport model underpredicts sediment transport, and thus fails to move the sandbar onshore. Although the coupled wave and sediment model can be tuned to yield skillful predictions of onshore sandbar migration, in general, closer agreement between observed and modeled statistics of the wave field is essential for the successful application of wave models to predict sediment transport. / by Fernanda Gemael Hoefel. / Ph.D.
164

Coral biomineralization, climate proxies and the sensitivity of coral reefs to CO₂-driven climate

DeCarlo, Thomas Mario January 2017 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Scleractinian corals extract calcium (Ca²⁺) and carbonate (CO₃²⁻) ions from seawater to construct their calcium carbonate (CaCO₃) skeletons. Key to the coral biomineralization process is the active elevation of the CO₃²⁻ concentration of the calcifying fluid to achieve rapid nucleation and growth of CaCO3 crystals. Coral skeletons contain valuable records of past climate variability and contribute to the formation of coral reefs. However, limitations in our understanding of coral biomineralization hinder the accuracy of (1) coral-based reconstructions of past climate, and (2) predictions of coral reef futures as anthropogenic CO₂ emissions drive declines in seawater CO₃²⁻ concentration. In this thesis, I investigate the mechanism of coral biomineralization and evaluate the sensitivity of coral reef CaCO₃ production to seawater carbonate chemistry. First, I conducted abiogenic CaCO₃²⁻ precipitation experiments that identified the U/Ca ratio as a proxy for fluid CO₃²⁻ concentration. Based on these experimental results, I developed a quantitative coral biomineralization model that predicts temperature can be reconstructed from coral skeletons by combining Sr/Ca - which is sensitive to both temperature and CO₃²⁻ - with U/Ca into a new proxy called "Sr-U". I tested this prediction with 14 corals from the Pacific Ocean and the Red Sea spanning mean annual temperatures of 25.7-30.1 °C and found that Sr-U has uncertainty of only 0.5 °C, twice as accurate as conventional coral-based thermometers. Second, I investigated the processes that differentiate reef-water and open-ocean carbonate chemistry, and the sensitivity of ecosystem-scale calcification to these changes. On Dongsha Atoll in the northern South China Sea, metabolic activity of resident organisms elevates reef-water CO₃²⁻ twice as high as the surrounding open ocean, driving rates of ecosystem calcification higher than any other coral reef studied to date. When high temperatures stressed the resident coral community, metabolic activity slowed, with dramatic effects on reef-water chemistry and ecosystem calcification. Overall, my thesis highlights how the modulation of CO₃²⁻, by benthic communities on the reef and individual coral polyps in the colony, controls the sensitivity of coral reefs to future ocean acidification and influences the climate records contained in the skeleton. / by Thomas Mario DeCarlo. / Ph. D.
165

Direct-form adaptive equalization for underwater acoustic communication

Yellepeddi, Atulya January 2012 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 139-143). / Adaptive equalization is an important aspect of communication systems in various environments. It is particularly important in underwater acoustic communication systems, as the channel has a long delay spread and is subject to the effects of time- varying multipath fading and Doppler spreading. The design of the adaptation algorithm has a profound influence on the performance of the system. In this thesis, we explore this aspect of the system. The emphasis of the work presented is on applying concepts from inference and decision theory and information theory to provide an approach to deriving and analyzing adaptation algorithms. Limited work has been done so far on rigorously devising adaptation algorithms to suit a particular situation, and the aim of this thesis is to concretize such efforts and possibly to provide a mathematical basis for expanding it to other applications. We derive an algorithm for the adaptation of the coefficients of an equalizer when the receiver has limited or no information about the transmitted symbols, which we term the Soft-Decision Directed Recursive Least Squares algorithm. We will demonstrate connections between the Expectation-Maximization (EM) algorithm and the Recursive Least Squares algorithm, and show how to derive a computationally efficient, purely recursive algorithm from the optimal EM algorithm. Then, we use our understanding of Markov processes to analyze the performance of the RLS algorithm in hard-decision directed mode, as well as of the Soft-Decision Directed RLS algorithm. We demonstrate scenarios in which the adaptation procedures fail catastrophically, and discuss why this happens. The lessons from the analysis guide us on the choice of models for the adaptation procedure. We then demonstrate how to use the algorithm derived in a practical system for underwater communication using turbo equalization. As the algorithm naturally incorporates soft information into the adaptation process, it becomes easy to fit it into a turbo equalization framework. We thus provide an instance of how to use the information of a turbo equalizer in an adaptation procedure, which has not been very well explored in the past. Experimental data is used to prove the value of the algorithm in a practical context. / by Atulya Yellepeddi. / S.M.
166

Large area underwater mosaicing for scientific applications by Oscar Pizarro.

Pizarro, Oscar January 2003 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2003. / Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2003. / Includes bibliographical references (p. 73-79). / S.M.
167

Geophysical and petrological constraints on ocean plate dynamics

Sarafian, Emily Kathryn January 2017 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references. / This thesis investigates the formation and subsequent motion of oceanic lithospheric plates through geophysical and petrological methods. Ocean crust and lithosphere forms at mid-ocean ridges as the underlying asthenosphere rises, melts, and flows away from the ridge axis. In Chapters 2 and 3, I present the results from partial melting experiments of mantle peridotite that were conducted in order to examine the mantle melting point, or solidus, beneath a mid-ocean ridge. Chapter 2 determines the peridotite solidus at a single pressure of 1.5 GPa and concludes that the oceanic mantle potential temperature must be -60 °C hotter than current estimates. Chapter 3 goes further to provide a more accurate parameterization of the anhydrous mantle solidus from experiments over a range of pressures. This chapter concludes that the range of potential temperatures of the mantle beneath mid-ocean ridges and plumes is smaller than currently estimated. Once formed, the oceanic plate moves atop the underlying asthenosphere away from the ridge axis. Chapter 4 uses seafloor magnetotelluric data to investigate the mechanism responsible for plate motion at the lithosphere-asthenosphere boundary. The resulting two dimensional conductivity model shows a simple layered structure. By applying petrological constraints, I conclude that the upper asthenosphere does not contain substantial melt, which suggests that either a thermal or hydration mechanism supports plate motion. Oceanic plate motion has dramatically changed the surface of the Earth over time, and evidence for ancient plate motion is obvious from detailed studies of the longer lived continental lithosphere. In Chapter 5, I investigate past plate motion by inverting magnetotelluric data collected over eastern Zambia. The conductivity model probes the Zambian lithosphere and reveals an ancient subduction zone previously suspected from surface studies. This chapter elucidates the complex lithospheric structure of eastern Zambia and the geometry of the tectonic elements in the region, which collided as a result of past oceanic plate motion. Combined, the chapters of this thesis provide critical constraints on ocean plate dynamics. / by Emily Kathryn Sarafian. / Ph. D.
168

Evaluation of vector sensors for adaptive equalization in underwater acoustic communication

Lewis, Matthew Robert, S.M. Massachusetts Institute of Technology January 2014 (has links)
Thesis: S.M., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2014. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 123-125). / Underwater acoustic communication is an extremely complex field that faces many challenges due to the time-varying nature of the ocean environment. Vector sensors are a proven technology that when utilizing their directional sensing capabilities allows us to minimize the effect of interfering noise sources. A traditional pressure sensor array has been the standard for years but suffers at degraded signal to noise ratios (SNR) and requires maneuvers or a lengthly array aperture to direction find. This thesis explores the effect of utilizing a vector sensor array to steer to the direction of signal arrival and the effect it has on equalization of the signal at degraded SNRs. It was demonstrated that utilizing a single vector sensor we were able steer to the direction of arrival and improve the ability of an equalizer to determine the transmitted signal. This improvement was most prominent when the SNR was degraded to levels of 0 and 10 dB where the performance of the vector sensor outperformed that of the pressure sensor in nearly 100% of cases. Finally, this performance improvement occurred with a savings in computational expense. / by Matthew Robert Lewis. / S.M.
169

A computational tool for the rapid design and prototyping of propellers for underwater vehicles

D'Epagnier, Kathryn Port January 2007 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 60). / An open source, MATLABTM-based propeller design code MPVL was improved to include rapid prototyping capabilities as well as other upgrades as part of this effort. The resulting code, OpenPVL is described in this thesis. In addition, results from the development code BasicPVL are presented. An intermediate code, BasicPVL, was created by the author while OpenPVL was under development, and it provides guidance for initial propeller designs and propeller efficiency analysis. OpenPVL is part of the open source software suite of propeller design codes, OpenProp. OpenPVL is in the form of a Graphical User Interface (GUI) which features both a parametric design technique and a single propeller geometry generator. This code combines a user-friendly interface with a highly modifiable platform for advanced users. This tool offers graphical propeller design feedback while recording propeller input, output, geometry, and performance. OpenPVL features the ability to translate the propeller design geometry into a file readable by a Computer Aided Design (CAD) program and converted into a 3D-printable file. Efficient propellers reduce the overall power requirements for Autonomous Underwater Vehicles (AUVs), and other propulsion-powered vehicles. The focus of this study is based on the need of propeller users to have an open source computer-based engineering tool for the rapid design of propellers suited to a wide range of underwater vehicles. Propeller vortex lattice lifting line (PVL) code in combination with 2D foil theory optimizes propeller design for AUVs. Several case studies demonstrate the functionality of OpenPVL, and serve as guides for future propeller designs. / (cont.) The first study analyzes propeller thruster performance characteristics for an off-the-shelf propeller, while the second study demonstrates the process for propeller optimization-from the initial design to the final file that can be read by a 3D printer. The third study reviews the complete process of the design and production of an AUV propeller. Thus, OpenPVL performs a variety of operations as a propeller lifting line code in streamlining the propeller optimization and prototyping process. / by Kathryn Port D'Epagnier. / S.M.
170

Modeling the processes affecting larval haddock (Melanogrammus aeglefinus) survival on Georges Bank

Petrik, Colleen Mary January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references. / The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. Recruitment is the single most important natural event controlling year-class strength and biomass in fish populations. As evident in Georges Bank haddock, Melanogrammus aeglefinus, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. Spatially explicit coupled biological-physical individual-based models are ideal for studying the processes of feeding, growth, and predation during the larval stage. This thesis sought new insights into the mechanisms controlling the recruitment process in fish populations by using recent advances in biological-physical modeling methods together with laboratory and field data sets. Interactions between feeding, metabolism and growth, vertical behavior, advection, predation, and the oceanic environment of larval haddock were quantitatively investigated using individual-based models. A mechanistic feeding model illustrated that species-specific behavioral characteristics of copepod prey are critically important in determining food availability to the haddock larvae. Experiments conducted with a one-dimensional vertical behavior model suggested that larval haddock should focus on avoiding visual predation when they are small and vulnerable and food is readily available. Coupled hydrodynamics, concentration-based copepod species, and individual-based larval haddock models demonstrated that the increased egg hatching rates and lower predation rates on larvae in 1998 contributed to its larger year-class. Additionally, results from these coupled models imply that losses to predation may be responsible for interannual variability in recruitment and larval survival. The findings of this thesis can be used to better manage the haddock population on Georges Bank by providing insights into how changes in the physical and biological environment of haddock affect their survival and recruitment, and more generally about the processes significant for larval fish survival. / by Colleen Mary Petrik. / Ph.D.

Page generated in 0.075 seconds