• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 20
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 67
  • 67
  • 67
  • 67
  • 62
  • 62
  • 62
  • 62
  • 62
  • 62
  • 23
  • 18
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Approches générales de résolution pour les problèmes multi-attributs de tournées de véhicules et confection d'horaires

Vidal, Thibaut 03 1900 (has links)
Le problème de tournées de véhicules (VRP) implique de planifier les itinéraires d'une flotte de véhicules afin de desservir un ensemble de clients à moindre coût. Ce problème d'optimisation combinatoire NP-difficile apparait dans de nombreux domaines d'application, notamment en logistique, télécommunications, robotique ou gestion de crise dans des contextes militaires et humanitaires. Ces applications amènent différents contraintes, objectifs et décisions supplémentaires ; des "attributs" qui viennent compléter les formulations classiques du problème. Les nombreux VRP Multi-Attributs (MAVRP) qui s'ensuivent sont le support d'une littérature considérable, mais qui manque de méthodes généralistes capables de traiter efficacement un éventail significatif de variantes. Par ailleurs, la résolution de problèmes "riches", combinant de nombreux attributs, pose d'importantes difficultés méthodologiques. Cette thèse contribue à relever ces défis par le biais d'analyses structurelles des problèmes, de développements de stratégies métaheuristiques, et de méthodes unifiées. Nous présentons tout d'abord une étude transversale des concepts à succès de 64 méta-heuristiques pour 15 MAVRP afin d'en cerner les "stratégies gagnantes". Puis, nous analysons les problèmes et algorithmes d'ajustement d'horaires en présence d'une séquence de tâches fixée, appelés problèmes de "timing". Ces méthodes, développées indépendamment dans différents domaines de recherche liés au transport, ordonnancement, allocation de ressource et même régression isotonique, sont unifiés dans une revue multidisciplinaire. Un algorithme génétique hybride efficace est ensuite proposé, combinant l'exploration large des méthodes évolutionnaires, les capacités d'amélioration agressive des métaheuristiques à voisinage, et une évaluation bi-critère des solutions considérant coût et contribution à la diversité de la population. Les meilleures solutions connues de la littérature sont retrouvées ou améliorées pour le VRP classique ainsi que des variantes avec multiples dépôts et périodes. La méthode est étendue aux VRP avec contraintes de fenêtres de temps, durée de route, et horaires de conducteurs. Ces applications mettent en jeu de nouvelles méthodes d'évaluation efficaces de contraintes temporelles relaxées, des phases de décomposition, et des recherches arborescentes pour l'insertion des pauses des conducteurs. Un algorithme de gestion implicite du placement des dépôts au cours de recherches locales, par programmation dynamique, est aussi proposé. Des études expérimentales approfondies démontrent la contribution notable des nouvelles stratégies au sein de plusieurs cadres méta-heuristiques. Afin de traiter la variété des attributs, un cadre de résolution heuristique modulaire est présenté ainsi qu'un algorithme génétique hybride unifié (UHGS). Les attributs sont gérés par des composants élémentaires adaptatifs. Des expérimentations sur 26 variantes du VRP et 39 groupes d'instances démontrent la performance remarquable de UHGS qui, avec une unique implémentation et paramétrage, égalise ou surpasse les nombreux algorithmes dédiés, issus de plus de 180 articles, révélant ainsi que la généralité ne s'obtient pas forcément aux dépends de l'efficacité pour cette classe de problèmes. Enfin, pour traiter les problèmes riches, UHGS est étendu au sein d'un cadre de résolution parallèle coopératif à base de décomposition, d'intégration de solutions partielles, et de recherche guidée. L'ensemble de ces travaux permet de jeter un nouveau regard sur les MAVRP et les problèmes de timing, leur résolution par des méthodes méta-heuristiques, ainsi que les méthodes généralistes pour l'optimisation combinatoire. / The Vehicle Routing Problem (VRP) involves designing least cost delivery routes to service a geographically-dispersed set of customers while taking into account vehicle-capacity constraints. This NP-hard combinatorial optimization problem is linked with multiple applications in logistics, telecommunications, robotics, crisis management in military and humanitarian frameworks, among others. Practical routing applications are usually quite distinct from the academic cases, encompassing additional sets of specific constraints, objectives and decisions which breed further new problem variants. The resulting "Multi-Attribute" Vehicle Routing Problems (MAVRP) are the support of a vast literature which, however, lacks unified methods capable of addressing multiple MAVRP. In addition, some "rich" VRPs, i.e. those that involve several attributes, may be difficult to address because of the wide array of combined and possibly antagonistic decisions they require. This thesis contributes to address these challenges by means of problem structure analysis, new metaheuristics and unified method developments. The "winning strategies" of 64 state-of-the-art algorithms for 15 different MAVRP are scrutinized in a unifying review. Another analysis is targeted on "timing" problems and algorithms for adjusting the execution dates of a given sequence of tasks. Such methods, independently studied in different research domains related to routing, scheduling, resource allocation, and even isotonic regression are here surveyed in a multidisciplinary review. A Hybrid Genetic Search with Advanced Diversity Control (HGSADC) is then introduced, which combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and a bi-criteria evaluation of solutions based on cost and diversity measures. Results of remarkable quality are achieved on classic benchmark instances of the capacitated VRP, the multi-depot VRP, and the periodic VRP. Further extensions of the method to VRP variants with constraints on time windows, limited route duration, and truck drivers' statutory pauses are also proposed. New route and neighborhood evaluation procedures are introduced to manage penalized infeasible solutions w.r.t. to time-window and duration constraints. Tree-search procedures are used for drivers' rest scheduling, as well as advanced search limitation strategies, memories and decomposition phases. A dynamic programming-based neighborhood search is introduced to optimally select the depot, vehicle type, and first customer visited in the route during local searches. The notable contribution of these new methodological elements is assessed within two different metaheuristic frameworks. To further advance general-purpose MAVRP methods, we introduce a new component-based heuristic resolution framework and a Unified Hybrid Genetic Search (UHGS), which relies on modular self-adaptive components for addressing problem specifics. Computational experiments demonstrate the groundbreaking performance of UHGS. With a single implementation, unique parameter setting and termination criterion, this algorithm matches or outperforms all current problem-tailored methods from more than 180 articles, on 26 vehicle routing variants and 39 benchmark sets. To address rich problems, UHGS was included in a new parallel cooperative solution framework called "Integrative Cooperative Search (ICS)", based on problem decompositions, partial solutions integration, and global search guidance. This compendium of results provides a novel view on a wide range of MAVRP and timing problems, on efficient heuristic searches, and on general-purpose solution methods for combinatorial optimization problems. / Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
42

A dynamic sequential route choice model for micro-simulation

Morin, Léonard Ryo 09 1900 (has links)
Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance. / In transportation modeling, a route choice is a model describing the selection of a route between a given origin and a given destination. More specifically, it consists of determining the sequence of arcs leading to the destination in a network composed of vertices and arcs, according to some selection criteria. We propose a novel route choice model, based on approximate dynamic programming. The technique is applied sequentially, as every time a user reaches an intersection, he/she is supposed to consider the utility of a certain number of future arcs, followed by an approximation for the rest of the path leading up to the destination. The route choice model is implemented as a component of a traffic simulation model, in a discrete event framework. We conduct a numerical experiment on a real traffic network model in order to analyze its performance.
43

Méthodes de résolution exactes et heuristiques pour un problème de tournées de techniciens

Mathlouthi, Ines 12 1900 (has links)
No description available.
44

Learning-Based Matheuristic Solution Methods for Stochastic Network Design

Sarayloo, Fatemeh 09 1900 (has links)
No description available.
45

Algorithmes heuristiques et exacts pour le problème de l’ensemble dominant connexe minimum

Soualah, Sofiane 08 1900 (has links)
No description available.
46

Conception du réseau de distribution d’une entreprise de livraison de courrier rapide

Ikama, Amine 08 1900 (has links)
No description available.
47

The load planning problem for double-stack intermodal trains

Mantovani, Serena 04 1900 (has links)
Les trains qui transportent des conteneurs empilés (en deux niveaux) sont un élément important du reseau de transport nord-americain. Le probleme de chargement des wagons correspond un probleme operationnel d'utilisation rencontre dans les terminaux ferroviaires. Elle consiste optimiser l’affectation des conteneurs des emplacements spécifiques sur les wagons. Ce mémoire est centré sur un article scientifique traitant le chargement optimal publié dans le Journal Européen de Recherche Opérationnelle (Volume 267, Numéro 1, Pages 107-119, 2018). Nous avons formule un modele lineaire en nombres entiers (ILP) et apporte un certain nombre de contributions. Premierement, nous avons proposé une méthodologie générale qui peut traiter des wagons double ou simple empilement avec des «patrons» de chargement arbitraires. Les les patrons tiennent un compte des dépendances de chargement entre les plateformes sur un wagon donne. Deuxiemement, nous avons modéliser les restrictions du centre de gravité (COG), les regles d’empilement et un nombre de restrictions techniques de chargement associees certains types de conteneurs et / ou de marchandises. Les resultats montrent que nous pouvons resoudre des instances de taille realiste dans un d´elai raisonnable en utilisant un solveur ILP commercial et nous illustrons que le fait de ne pas tenir compte de la correspondance conteneurs-wagons ainsi que des restrictions COG peut conduire une surestimation de la capacité disponible. / Double-stack trains are an important component of the railroad transport network for containerized cargo in specific markets such as North America. The load planning problem embodies an operational problem commonly faced in rail terminals by operators. It consists in optimizing the assignment of containers to specific locations on the train. The work in this thesis is centered around a scientific paper on the optimization on load planning problem for double stack-trains, published in the European Journal of Operation Research (Volume 267, Issue 1, Pages 1-398) on 16 May 2018. In the paper, we formulated an ILP model and made a number of contributions. First, we proposed a general methodology that can deal with double- or single-stack railcars with arbitrary loading patterns. The patterns account for loading dependencies between the platforms on a given railcar. Second, we modeled Center of gravity (COG) restrictions, stacking rules and a number of technical loading restrictions associated with certain types of containers and/or goods. Results show that we can solve realistic size instances in reasonable time using a commercial ILP solver and we illustrate that failing to account for containers-to-cars matching as well as COG restrictions may lead to an overestimation of the available train capacity.
48

Staffing optimization with chance constraints in call centers

Ta, Thuy Anh 12 1900 (has links)
Les centres d’appels sont des éléments clés de presque n’importe quelle grande organisation. Le problème de gestion du travail a reçu beaucoup d’attention dans la littérature. Une formulation typique se base sur des mesures de performance sur un horizon infini, et le problème d’affectation d’agents est habituellement résolu en combinant des méthodes d’optimisation et de simulation. Dans cette thèse, nous considérons un problème d’affection d’agents pour des centres d’appels soumis a des contraintes en probabilité. Nous introduisons une formulation qui exige que les contraintes de qualité de service (QoS) soient satisfaites avec une forte probabilité, et définissons une approximation de ce problème par moyenne échantillonnale dans un cadre de compétences multiples. Nous établissons la convergence de la solution du problème approximatif vers celle du problème initial quand la taille de l’échantillon croit. Pour le cas particulier où tous les agents ont toutes les compétences (un seul groupe d’agents), nous concevons trois méthodes d’optimisation basées sur la simulation pour le problème de moyenne échantillonnale. Étant donné un niveau initial de personnel, nous augmentons le nombre d’agents pour les périodes où les contraintes sont violées, et nous diminuons le nombre d’agents pour les périodes telles que les contraintes soient toujours satisfaites après cette réduction. Des expériences numériques sont menées sur plusieurs modèles de centre d’appels à faible occupation, au cours desquelles les algorithmes donnent de bonnes solutions, i.e. la plupart des contraintes en probabilité sont satisfaites, et nous ne pouvons pas réduire le personnel dans une période donnée sont introduire de violation de contraintes. Un avantage de ces algorithmes, par rapport à d’autres méthodes, est la facilité d’implémentation. / Call centers are key components of almost any large organization. The problem of labor management has received a great deal of attention in the literature. A typical formulation of the staffing problem is in terms of infinite-horizon performance measures. The method of combining simulation and optimization is used to solve this staffing problem. In this thesis, we consider a problem of staffing call centers with respect to chance constraints. We introduce chance-constrained formulations of the scheduling problem which requires that the quality of service (QoS) constraints are met with high probability. We define a sample average approximation of this problem in a multiskill setting. We prove the convergence of the optimal solution of the sample-average problem to that of the original problem when the sample size increases. For the special case where we consider the staffing problem and all agents have all skills (a single group of agents), we design three simulation-based optimization methods for the sample problem. Given a starting solution, we increase the staffings in periods where the constraints are violated, and decrease the number of agents in several periods where decrease is acceptable, as much as possible, provided that the constraints are still satisfied. For the call center models in our numerical experiment, these algorithms give good solutions, i.e., most constraints are satisfied, and we cannot decrease any agent in any period to obtain better results. One advantage of these algorithms, compared with other methods, that they are very easy to implement.
49

Extending domain-specific modeling editors with multi-touch interactions

Hossain, Md Rifat 03 1900 (has links)
L'ingénierie dirigée par les modèles (MDE) est une méthodologie d'ingénierie logiciel qui permet aux ingénieurs de définir des modèles conceptuels pour un domaine spécifique. La MDE est supportée par des outils de modélisation, qui sont des éditeurs pour créer et manipuler des modèles spécifiques au domaine. Cependant, l'état actuel de la pratique de ces éditeurs de modélisation offre des interactions utilisateur très limitées, souvent restreintes à glisser-déposer en utilisant les mouvements de souris et les touches du clavier. Récemment, un nouveau cadre propose de spécifier explicitement les interactions utilisateur des éditeurs de modélisation. Dans cette thèse, nous étendons ce cadre pour supporter les interactions multitouches lors de la modélisation. Nous proposons un catalogue initial de gestes multitouches pour offrir une variété de gestes tactiles utiles. Nous démontrons comment notre approche est applicable pour générer des éditeurs de modélisation. Notre approche permet des interactions plus naturelles pour l'utilisateur quand il effectue des tâches de modélisation types. / Model-driven engineering (MDE) is a software engineering methodology that enables engineers to define conceptual models for a specific domain. Modeling is supported by modeling language workbenches, acting as editor to create and manipulate domain-specific models. However, the current state of practice of these modeling editors offers very limited user interactions, often restricted to drag-and-drop with mouse movement and keystrokes. Recently, a novel framework proposes to explicitly specify the user interactions of modeling editors. In this thesis, we extend this framework to support multi-touch interactions when modeling. We propose an initial set of multi-touch gesture catalog to offer a variety of useful touch gestures. We demonstrate how our approach is applicable for generating modeling editors. Our approach yields more natural user interactions to perform typical modeling tasks.
50

Stochastic mesh approximations for dynamic hedging with costs

Tremblay, Pierre-Alexandre 07 1900 (has links)
Cette thèse se concentre sur le calcul de la solution optimale d'un problème de couverture de produit dérivé en temps discret. Le problème consiste à minimiser une mesure de risque, définie comme l'espérance d'une fonction convexe du profit (ou perte) du portefeuille, en tenant compte des frais de transaction. Lorsqu'il y a des coûts, il peut être optimal de ne pas transiger. Ainsi, les solutions sont caractérisées par des frontières de transaction. En général, les politiques optimales et les fonctions de risque associées ne sont pas connues explicitement, mais une stratégie bien connue consiste à approximer les solutions de manière récursive en utilisant la programmation dynamique. Notre contribution principale est d'appliquer la méthode du maillage stochastique. Cela permet d'utiliser des processus stochastiques multi-dimensionels pour les dynamiques de prix. On obtient aussi des estimateurs biasés à la hausse et à la baisse, donnant une mesure de la proximité de l'optimum. Nous considérons différentes façons d'améliorer l'efficacité computationelle. Utiliser la technique des variables de contrôle réduit le bruit qui provient de l'utilisation de prix de dérivés estimés à même le maillage stochastique. Deux autres techniques apportent des réductions complémentaires du temps de calcul : utiliser une grille unique pour les états du maillage et utiliser une procédure de "roulette Russe". Dans la dernière partie de la thèse, nous présentons une application pour le cas de la fonction de risque exponentielle négative et un modèle à volatilité stochastique (le modèle de Ornstein-Uhlenbeck exponentiel). Nous étudions le comportement des solutions sous diverses configurations des paramètres du modèle et comparons la performance des politiques basées sur un maillage à celles d'heuristiques. / This thesis focuses on computing the optimal solution to a derivative hedging problem in discrete time. The problem is to minimize a risk measure, defined as the expectation of a convex function of the terminal profit and loss of the portfolio, taking transaction costs into account. In the presence of costs, it is sometimes optimal not to trade, so the solutions are characterized in terms of trading boundaries. In general, the optimal policies and the associated risk functions are not known explicitly, but a well-known strategy is to approximate the solutions recursively using dynamic programming. Our central innovation is in applying the stochastic mesh method, which was originally applied to option pricing. It allows exibility for the price dynamics, which could be driven by a multi-dimensional stochastic process. It also yields both low and high biased estimators of the optimal risk, thus providing a measure of closeness to the actual optimum. We look at various ways to improve the computational efficiency. Using the control variate technique reduces the noise that comes from using derivative prices estimated on the stochastic mesh. Two additional techniques turn out to provide complementary computation time reductions : using a single grid for the mesh states and using a so-called Russian roulette procedure. In the last part of the thesis, we showcase an application to the particular case of the negative exponential risk function and a stochastic volatility model (the exponential Ornstein-Uhlenbeck model). We study the behavior of the solutions under various configurations of the model parameters and compare the performance of the mesh-based policies with that of well-known heuristics.

Page generated in 0.1331 seconds