• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 244
  • 43
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 553
  • 553
  • 364
  • 352
  • 109
  • 106
  • 105
  • 104
  • 93
  • 90
  • 90
  • 87
  • 86
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Inferring phenotypes from genotypes with machine learning : an application to the global problem of antibiotic resistance

Drouin, Alexandre 23 May 2019 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / La compréhension du lien entre les caractéristiques génomiques d’un individu, le génotype, et son état biologique, le phénotype, est un élément essentiel au développement d’une médecine personnalisée où les traitements sont adaptés à chacun. Elle permet notamment d’anticiper des maladies, d’estimer la réponse à des traitements et même d’identifier de nouvelles cibles pharmaceutiques. L’apprentissage automatique est une science visant à développer des algorithmes capables d’apprendre à partir d’exemples. Ces algorithmes peuvent être utilisés pour produire des modèles qui estiment des phénotypes à partir de génotypes, lesquels peuvent ensuite être étudiés pour élucider les mécanismes biologiques sous-jacents aux phénotypes. Toutefois, l’utilisation d’algorithmes d’apprentissage dans ce contexte pose d’importants défis algorithmiques et théoriques. La haute dimensionnalité des données génomiques et la petite taille des échantillons de données peuvent mener au surapprentissage; le volume des données requiert des algorithmes adaptés qui limitent leur utilisation des ressources computationnelles; et finalement, les modèles obtenus doivent pouvoir être interprétés par des experts du domaine, ce qui n’est pas toujours possible. Cette thèse présente des algorithmes d’apprentissage produisant des modèles interprétables pour la prédiction de phénotypes à partir de génotypes. En premier lieu, nous explorons la prédiction de phénotypes discrets à l’aide d’algorithmes à base de règles. Nous proposons de nouvelles implémentations hautement optimisées et des garanties de généralisation adaptées aux données génomiques. En second lieu, nous nous intéressons à un problème plus théorique, soit la régression par intervalles, et nous proposons deux nouveaux algorithmes d’apprentissage, dont un à base de règles. Finalement, nous montrons que ce type de régression peut être utilisé pour prédire des phénotypes continus et que ceci mène à des modèles plus précis que ceux des méthodes conventionnelles en présence de données censurées ou bruitées. Le thème applicatif de cette thèse est la prédiction de la résistance aux antibiotiques, un problème de santé publique d’envergure mondiale. Nous démontrons que nos algorithmes peuvent servir à prédire, de façon très précise, des phénotypes de résistance, tout en contribuant à en améliorer la compréhension. Ultimement, nos algorithmes pourront servir au développement d’outils permettant une meilleure utilisation des antibiotiques et un meilleur suivi épidémiologique, un élément clé de la solution à ce problème. / A thorough understanding of the relationship between the genomic characteristics of an individual (the genotype) and its biological state (the phenotype) is essential to personalized medicine, where treatments are tailored to each individual. This notably allows to anticipate diseases, estimate response to treatments, and even identify new pharmaceutical targets. Machine learning is a science that aims to develop algorithms that learn from examples. Such algorithms can be used to learn models that estimate phenotypes based on genotypes, which can then be studied to elucidate the biological mechanisms that underlie the phenotypes. Nonetheless, the application of machine learning in this context poses significant algorithmic and theoretical challenges. The high dimensionality of genomic data and the small size of data samples can lead to overfitting; the large volume of genomic data requires adapted algorithms that limit their use of computational resources; and importantly, the learned models must be interpretable by domain experts, which is not always possible. This thesis presents learning algorithms that produce interpretable models for the prediction of phenotypes based on genotypes. Firstly, we explore the prediction of discrete phenotypes using rule-based learning algorithms. We propose new implementations that are highly optimized and generalization guarantees that are adapted to genomic data. Secondly, we study a more theoretical problem, namely interval regression. We propose two new learning algorithms, one which is rule-based. Finally, we show that this type of regression can be used to predict continuous phenotypes and that this leads to models that are more accurate than those of conventional approaches in the presence of censored or noisy data. The overarching theme of this thesis is an application to the prediction of antibiotic resistance, a global public health problem of high significance. We demonstrate that our algorithms can be used to accurately predict resistance phenotypes and contribute to the improvement of their understanding. Ultimately, we expect that our algorithms will take part in the development of tools that will allow a better use of antibiotics and improved epidemiological surveillance, a key component of the solution to this problem.
62

Bornes PAC-Bayes et algorithmes d'apprentissage

Lacasse, Alexandre. 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / L’objet principale de cette thèse est l’étude théorique et la conception d’algorithmes d’apprentissage concevant des classificateurs par vote de majorité. En particulier, nous présentons un théorème PAC-Bayes s’appliquant pour borner, entre autres, la variance de la perte de Gibbs (en plus de son espérance). Nous déduisons de ce théorème une borne du risque du vote de majorité plus serrée que la fameuse borne basée sur le risque de Gibbs. Nous présentons également un théorème permettant de borner le risque associé à des fonctions de perte générale. À partir de ce théorème, nous concevons des algorithmes d’apprentissage construisant des classificateurs par vote de majorité pondérés par une distribution minimisant une borne sur les risques associés aux fonctions de perte linéaire, quadratique, exponentielle, ainsi qu’à la fonction de perte du classificateur de Gibbs à piges multiples. Certains de ces algorithmes se comparent favorablement avec AdaBoost. / The main purpose of this thesis is the theoretical study and the design of learning algorithms returning majority-vote classifiers. In particular, we present a PAC-Bayes theorem allowing us to bound the variance of the Gibbs’ loss (not only its expectation). We deduce from this theorem a bound on the risk of a majority vote tighter than the famous bound based on the Gibbs’ risk. We also present a theorem that allows to bound the risk associated with general loss functions. From this theorem, we design learning algorithms building weighted majority vote classifiers minimizing a bound on the risk associated with the following loss functions : linear, quadratic and exponential. Also, we present algorithms based on the randomized majority vote. Some of these algorithms compare favorably with AdaBoost.
63

NeuroTorch : une librairie Python dédiée à l'apprentissage automatique dans le domaine des neurosciences

Gince, Jérémie 18 December 2023 (has links)
Titre de l'écran-titre (visionné le 29 novembre 2023) / L'apprentissage automatique a considérablement progressé dans le domaine de la recherche en neurosciences, mais son application pose des défis en raison des différences entre les principes biologiques du cerveau et les méthodes traditionnelles d'apprentissage automatique. Dans ce contexte, le projet présenté propose NeuroTorch, un pipeline convivial d'apprentissage automatique spécialement conçu pour les neuroscientifiques, afin de relever ces défis. Les objectifs clés de ce projet sont de fournir une librairie d'apprentissage profond adaptée aux neurosciences computationnelles, d'implémenter l'algorithme eligibility trace forward propagation (e-prop) pour sa plausibilité biologique, de comparer les réseaux de neurones continus et à impulsions en termes de résilience, et d'intégrer un pipeline d'apprentissage par renforcement. Le projet se divise en plusieurs parties. Tout d'abord, la théorie des dynamiques neuronales, des algorithmes d'optimisation et des fonctions de transformation d'espaces sera développée. Ensuite, l'attention sera portée sur la conception du pipeline NeuroTorch, incluant l'implémentation de l'algorithme e-prop. Les résultats de la prédiction de séries temporelles d'activité neuronale chez le poisson-zèbre seront présentés, ainsi que des observations sur la résilience à l'ablation des réseaux obtenus. Enfin, une section sera consacrée à l'exploration du pipeline d'apprentissage par renforcement de NeuroTorch et à la validation de son architecture dans l'environnement LunarLander de Gym. En résumé, les modèles à impulsions de NeuroTorch ont atteint des précisions de 96,37%, 85,58% et 74,16% respectivement sur les ensembles de validation MNIST, Fashion-MNIST et Heidelberg. De plus, les dynamiques leaky-integrate-and-fire with explicit synaptic current - low pass filter (SpyLIF-LPF) et Wilson-Cowan ont été entraînées avec succès à l'aide de l'algorithme e-prop sur des données neuronales expérimentales du ventral habenula du poisson-zèbre, obtenant respectivement des valeurs de pVar de 0,97 et 0,96. Les résultats concernant la résilience indiquent que l'application de la loi de Dale améliore la robustesse des modèles en termes d'ablation hiérarchique. Enfin, grâce au pipeline d'apprentissage par renforcement de NeuroTorch, différents types d'agents inspirés des neurosciences ont atteint le critère de réussite dans l'environnement LunarLander de Gym. Ces résultats soulignent la pertinence et l'efficacité de NeuroTorch pour les applications en neurosciences computationnelles. / Machine learning has made significant advancements in neuroscience research, but its application presents challenges due to the differences between the biological principles of the brain and traditional machine learning methods. In this context, the presented project proposes NeuroTorch, a comprehensive machine learning pipeline specifically designed for neuroscientists to address these challenges. The key objectives of this project are to provide a deep learning library tailored to computational neuroscience, implement the eligibility trace forward propagation (e-prop) algorithm for biological plausibility, compare continuous and spiking neural networks in terms of resilience, and integrate a reinforcement learning pipeline. The project is divided into several parts. Firstly, the theory of neural dynamics, optimization algorithms, and space transformation functions will be developed. Next focus will be on the design of the NeuroTorch pipeline, including the implementation of the e-prop algorithm. Results of predicting a time series of neuronal activity in zebrafish will be presented, along with observations on the resilience to network ablations obtained. Finally, a section will be dedicated to exploring the NeuroTorch reinforcement learning pipeline and validating its architecture in the LunarLander environment of Gym. In summary, NeuroTorch spiking models achieved accuracies of 96.37%, 85.58%, and 74.16% on the MNIST, Fashion-MNIST, and Heidelberg validation sets, respectively. Furthermore, the leaky-integrate-and-fire with explicit synaptic current - low pass filter (SpyLIF-LPF) and Wilson-Cowan dynamics were successfully trained using the e-prop algorithm on experimental neuronal data from the ventral habenula of zebrafish, achieving pVar values of 0.97 and 0.96, respectively. Results regarding resilience indicate that the application of the Dale law improves the robustness of models in terms of hierarchical ablation. Lastly, through the NeuroTorch reinforcement learning pipeline, different types of neuroscience-inspired agents successfully met the success criterion in the Gym's LunarLander environment. These results highlight the relevance and effectiveness of NeuroTorch for applications in computational neuroscience.
64

A General Machine Reading Comprehension pipeline

Debruyker, Roxane 19 September 2022 (has links)
Savoir lire est une compétence qui va de la capacité à décoder des caractères à la compréhension profonde du sens de textes. Avec l'émergence de l'intelligence artificielle, deux questions se posent : Comment peut-on apprendre à une intelligence artificielle à lire? Qu'est-ce que cela implique? En essayant de répondre à ces questions, une première évidence nous est rappelée : savoir lire ne peut pas se réduire à savoir répondre à des questions sur des textes. Étant donné que les modèles d'apprentissage machine apprennent avec des exemples d'essai erreur, ils vont apprendre à lire en apprenant à répondre correctement à des questions sur des textes. Cependant, il ne faut pas perdre de vue que savoir lire, c'est comprendre différents types de textes et c'est cette compréhension qui permet de répondre à des questions sur un texte. En d'autres termes, répondre à des questions sur des textes est un des moyens d'évaluation de la compétence de lecture plus qu'une fin en soi. Aujourd'hui, il existe différents types de jeux de données qui sont utilisées pour apprendre à des intelligences artificielles à apprendre à lire. Celles ci proposent des textes avec des questions associées qui requièrent différents types de raisonnement : associations lexicales, déductions à partir d'indices disséminés dans le texte, paraphrase, etc. Le problème est que lorsqu'une intelligence artificielle apprend à partir d'un seul de ces jeux de données, elle n'apprend pas à lire mais est plutôt formée à répondre à un type de question, sur un certain type de texte et avec un certain style d'écriture. Outre la problématique de la généralisation des compétences de lecture, les modèles d'intelligence artificielle qui apprennent à lire en apprenant à répondre à des questions retournent des réponses sans systématiquement indiquer sur quelles phrases du texte sources ils se basent. Cela pose un problème d'explicabilité et peut entrainer une mécompréhension des capacités de ces modèles. Dans ce mémoire, nous proposons de résoudre le problème de généralisation de l'apprentissage en proposant une méthodologie générale adaptée à n'importe quel jeu de données. Ainsi, en ayant une méthodologie commune à tous les types de jeux de données pour apprendre à répondre à tout type de question, sur tout type de texte, nous pourrions apprendre aux modèles d'intelligence artificielle à se concentrer sur les compétences générales de lecture plutôt que sur la capacité spécifique à répondre aux questions. Afin de résoudre également le problème de l'explicabilité, la méthodologie que nous proposons impose à tout modèle de compréhension de lecture automatique de renvoyer les extraits du texte source sur lequel ces réponses sont basées. / Reading is a skill that ranges from the ability to decode characters to a deep understanding of the meaning of a text. With the emergence of artificial intelligence, two questions arise: How can an artificial intelligence be taught to read? What does this imply? In trying to answer these questions, we are reminded of the obvious: knowing how to read cannot be reduced to knowing how to answer questions about texts. Since machine learning models learn with trial-and-error examples, they will learn to read by learning to answer correctly questions about the text they read. However, one should not forget the fact that knowing how to read means understanding different types of texts sufficiently well, and it is this that enables answering questions about a text. In other words, answering questions about texts is one of the means of assessing reading skills rather than an end in itself. Today, there are different types of datasets that are used to teach artificial intelligences to learn to read. These provide texts with associated questions that require different types of reasoning: lexical associations, deductions from discrete clues in the text, paraphrasing, etc. The problem is that when an artificial intelligence learns from only one of these datasets, it does not learn to read but is instead trained to answer a certain type of question, on a certain type of text and with a certain writing style. In addition to the problem of generalizing reading skills, artificial intelligence models that learn to read by learning to answer questions return answers without systematically indicating which sentences in the source text they are based on. This poses a problem of explicability and can lead to a misunderstanding of the capabilities of these models. In this thesis, we propose to solve the generalization issue of learning from one dataset by proposing a general methodology suiting to any machine reading comprehension dataset. Thus, by having a methodology common to all types of datasets to learn how to answer any type of question, on any type of text, we could teach artificial intelligence models to focus on general reading skills rather than on the specific ability to answer questions. In order to also solve the issue of explanability, the methodology we propose impose any machine reading comprehension model to return the span of the source text its answers are based on.
65

Sample Compressed PAC-Bayesian Bounds and learning algorithms

Shanian, Sara 18 April 2018 (has links)
Dans le domaine de la classification, les algorithmes d'apprentissage par compression d'échantillons sont des algorithmes qui utilisent les données d'apprentissage disponibles pour construire l'ensemble de classificateurs possibles. Si les données appartiennent seulement à un petit sous-espace de l'espace de toutes les données «possibles», ces algorithmes possédent l'intéressante capacité de ne considérer que les classificateurs qui permettent de distinguer les exemples qui appartiennent à notre domaine d'intérêt. Ceci contraste avec d'autres algorithmes qui doivent considérer l'ensemble des classificateurs avant d'examiner les données d'entraînement. La machine à vecteurs de support (le SVM) est un algorithme d'apprentissage très performant qui peut être considéré comme un algorithme d'apprentissage par compression d'échantillons. Malgré son succès, le SVM est actuellement limité par le fait que sa fonction de similarité doit être un noyau symétrique semi-défini positif. Cette limitation rend le SVM difficilement applicable au cas où on désire utiliser une mesure de similarité quelconque. / In classification, sample compression algorithms are the algorithms that make use of the available training data to construct the set of possible predictors. If the data belongs to only a small subspace of the space of all "possible" data, such algorithms have the interesting ability of considering only the predictors that distinguish examples in our areas of interest. This is in contrast with non sample compressed algorithms which have to consider the set of predictors before seeing the training data. The Support Vector Machine (SVM) is a very successful learning algorithm that can be considered as a sample-compression learning algorithm. Despite its success, the SVM is currently limited by the fact that its similarity function must be a symmetric positive semi-definite kernel. This limitation by design makes SVM hardly applicable for the cases where one would like to be able to use any similarity measure of input example. PAC-Bayesian theory has been shown to be a good starting point for designing learning algorithms. In this thesis, we propose a PAC-Bayes sample-compression approach to kernel methods that can accommodate any bounded similarity function. We show that the support vector classifier is actually a particular case of sample-compressed classifiers known as majority votes of sample-compressed classifiers. We propose two different groups of PAC-Bayesian risk bounds for majority votes of sample-compressed classifiers. The first group of proposed bounds depends on the KL divergence between the prior and the posterior over the set of sample-compressed classifiers. The second group of proposed bounds has the unusual property of having no KL divergence when the posterior is aligned with the prior in some precise way that we define later in this thesis. Finally, for each bound, we provide a new learning algorithm that consists of finding the predictor that minimizes the bound. The computation times of these algorithms are comparable with algorithms like the SVM. We also empirically show that the proposed algorithms are very competitive with the SVM.
66

Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif, l'apprentissage transductif et l'adaptation de domaine

Germain, Pascal 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / En apprentissage automatique, l’approche PAC-bayésienne permet d’obtenir des garanties statistiques sur le risque de votes de majorité pondérés de plusieurs classificateurs (nommés votants). La théorie PAC-bayésienne «classique», initiée par McAllester (1999), étudie le cadre d’apprentissage inductif, sous l’hypothèse que les exemples d’apprentissage sont générés de manière indépendante et qu’ils sont identiquement distribués (i.i.d.) selon une distribution de probabilité inconnue mais fixe. Les contributions de la thèse se divisent en deux parties. Nous présentons d’abord une analyse des votes de majorité, fondée sur l’étude de la marge comme variable aléatoire. Il en découle une conceptualisation originale de la théorie PACbayésienne. Notre approche, très générale, permet de retrouver plusieurs résultats existants pour le cadre d’apprentissage inductif, ainsi que de les relier entre eux. Nous mettons notamment en lumière l’importance de la notion d’espérance de désaccord entre les votants. Bâtissant sur une compréhension approfondie de la théorie PAC-bayésienne, acquise dans le cadre inductif, nous l’étendons ensuite à deux autres cadres d’apprentissage. D’une part, nous étudions le cadre d’apprentissage transductif, dans lequel les descriptions des exemples à classifier sont connues de l’algorithme d’apprentissage. Dans ce contexte, nous formulons des bornes sur le risque du vote de majorité qui améliorent celles de la littérature. D’autre part, nous étudions le cadre de l’adaptation de domaine, dans lequel la distribution génératrice des exemples étiquetés de l’échantillon d’entraînement diffère de la distribution générative des exemples sur lesquels sera employé le classificateur. Grâce à une analyse théorique – qui se révèle être la première approche PAC-bayésienne de ce cadre d’apprentissage –, nous concevons un algorithme d’apprentissage automatique dédié à l’adaptation de domaine. Nos expérimentations empiriques montrent que notre algorithme est compétitif avec l’état de l’art. / In machine learning, the PAC-Bayesian approach provides statistical guarantees on the risk of a weighted majority vote of many classifiers (named voters). The “classical” PAC-Bayesian theory, initiated by McAllester (1999), studies the inductive learning framework under the assumption that the learning examples are independently generated and are identically distributed (i.i.d.) according to an unknown but fixed probability distribution. The thesis contributions are divided in two major parts. First, we present an analysis of majority votes based on the study of the margin as a random variable. It follows a new conceptualization of the PAC-Bayesian theory. Our very general approach allows us to recover several existing results for the inductive PAC-Bayesian framework, and link them in a whole. Among other things, we highlight the notion of expected disagreement between the voters. Building upon an improved understanding of the PAC-Bayesian theory, gained by studying the inductive framework, we then extend it to two other learning frameworks. On the one hand, we study the transductive framework, where the learning algorithm knows the description of the examples to be classified. In this context, we state risk bounds on majority votes that improve those from the current literature. On the other hand, we study the domain adaptation framework, where the generating distribution of the labelled learning examples differs from the generating distribution of the examples to be classified. Our theoretical analysis is the first PAC-Bayesian approach of this learning framework, and allows us to conceive a new machine learning algorithm for domain adaptation. Our empirical experiments show that our algorithm is competitive with other state-of-the-art algorithms.
67

Learning geometric and lighting priors from natural images

Hold-Geoffroy, Yannick 20 September 2018 (has links)
Comprendre les images est d’une importance cruciale pour une pléthore de tâches, de la composition numérique au ré-éclairage d’une image, en passant par la reconstruction 3D d’objets. Ces tâches permettent aux artistes visuels de réaliser des chef-d’oeuvres ou d’aider des opérateurs à prendre des décisions de façon sécuritaire en fonction de stimulis visuels. Pour beaucoup de ces tâches, les modèles physiques et géométriques que la communauté scientifique a développés donnent lieu à des problèmes mal posés possédant plusieurs solutions, dont généralement une seule est raisonnable. Pour résoudre ces indéterminations, le raisonnement sur le contexte visuel et sémantique d’une scène est habituellement relayé à un artiste ou un expert qui emploie son expérience pour réaliser son travail. Ceci est dû au fait qu’il est généralement nécessaire de raisonner sur la scène de façon globale afin d’obtenir des résultats plausibles et appréciables. Serait-il possible de modéliser l’expérience à partir de données visuelles et d’automatiser en partie ou en totalité ces tâches ? Le sujet de cette thèse est celui-ci : la modélisation d’a priori par apprentissage automatique profond pour permettre la résolution de problèmes typiquement mal posés. Plus spécifiquement, nous couvrirons trois axes de recherche, soient : 1) la reconstruction de surface par photométrie, 2) l’estimation d’illumination extérieure à partir d’une seule image et 3) l’estimation de calibration de caméra à partir d’une seule image avec un contenu générique. Ces trois sujets seront abordés avec une perspective axée sur les données. Chacun de ces axes comporte des analyses de performance approfondies et, malgré la réputation d’opacité des algorithmes d’apprentissage machine profonds, nous proposons des études sur les indices visuels captés par nos méthodes. / Understanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods.
68

Selective sampling for classification

Shanian, Sara 13 April 2018 (has links)
Une des objectifs poursuivis par la recherche en apprentissage automatique est la construction de bons classificateurs à partir d'un ensemble d'exemples étiquetés. Certains problèmes nécessitent de réunir un grand ensemble d'exemples étiquetés, ce qui peut s'avérer long et coûteux. Afin de réduire ces efforts, il est possible d'utiliser les algorithmes d'apprentissage actif. Ces algorithmes tirent profit de la possibilité de faire quelques demandes d'étiquetage parmi un grand ensemble d'exemples non-étiquetés pour construire un classificateur précis. Il est cependant important de préciser que les algorithmes d'apprentissage actif actuels possèdent eux-mêmes quelques points faibles connus qui peuvent les mener à performer inadéquatement dans certaines situations. Dans cette thèse, nous proposons un nouvel algorithme d'apprentissage actif. Notre algorithme atténue certains points faibles des précédents algorithmes d'apprentissage actif, et il se révèle trés compétitif aux algorithmes d'apprentissage actif bien-connus. De plus, notre algorithme est facile à implémenter. / One of the goals of machine learning researches is to build accurate classifiers form an amount of labeled examples. In some problems, it is necessary to gather a large set of labeled examples which can be costly and time-consuming. To reduce these expenses, one can use active learning algorithms. These algorithms benefit from the possibility of performing a small number of label-queries from a large set of unlabeled examples to build an accurate classifier. It should be mentioned that actual active learning algorithms, themselves, have some known weak points which may lead them to perform unsuccessfully in certain situations. In this thesis, we propose a novel active learning algorithm. Our proposed algorithm not only fades the weak points of the previous active learning algorithms, but also performs competitively among the widely known active learning algorithms while it is easy to implement.
69

Bayesian nonparametric latent variable models

Dallaire, Patrick 24 April 2018 (has links)
L’un des problèmes importants en apprentissage automatique est de déterminer la complexité du modèle à apprendre. Une trop grande complexité mène au surapprentissage, ce qui correspond à trouver des structures qui n’existent pas réellement dans les données, tandis qu’une trop faible complexité mène au sous-apprentissage, c’est-à-dire que l’expressivité du modèle est insuffisante pour capturer l’ensemble des structures présentes dans les données. Pour certains modèles probabilistes, la complexité du modèle se traduit par l’introduction d’une ou plusieurs variables cachées dont le rôle est d’expliquer le processus génératif des données. Il existe diverses approches permettant d’identifier le nombre approprié de variables cachées d’un modèle. Cette thèse s’intéresse aux méthodes Bayésiennes nonparamétriques permettant de déterminer le nombre de variables cachées à utiliser ainsi que leur dimensionnalité. La popularisation des statistiques Bayésiennes nonparamétriques au sein de la communauté de l’apprentissage automatique est assez récente. Leur principal attrait vient du fait qu’elles offrent des modèles hautement flexibles et dont la complexité s’ajuste proportionnellement à la quantité de données disponibles. Au cours des dernières années, la recherche sur les méthodes d’apprentissage Bayésiennes nonparamétriques a porté sur trois aspects principaux : la construction de nouveaux modèles, le développement d’algorithmes d’inférence et les applications. Cette thèse présente nos contributions à ces trois sujets de recherches dans le contexte d’apprentissage de modèles à variables cachées. Dans un premier temps, nous introduisons le Pitman-Yor process mixture of Gaussians, un modèle permettant l’apprentissage de mélanges infinis de Gaussiennes. Nous présentons aussi un algorithme d’inférence permettant de découvrir les composantes cachées du modèle que nous évaluons sur deux applications concrètes de robotique. Nos résultats démontrent que l’approche proposée surpasse en performance et en flexibilité les approches classiques d’apprentissage. Dans un deuxième temps, nous proposons l’extended cascading Indian buffet process, un modèle servant de distribution de probabilité a priori sur l’espace des graphes dirigés acycliques. Dans le contexte de réseaux Bayésien, ce prior permet d’identifier à la fois la présence de variables cachées et la structure du réseau parmi celles-ci. Un algorithme d’inférence Monte Carlo par chaîne de Markov est utilisé pour l’évaluation sur des problèmes d’identification de structures et d’estimation de densités. Dans un dernier temps, nous proposons le Indian chefs process, un modèle plus général que l’extended cascading Indian buffet process servant à l’apprentissage de graphes et d’ordres. L’avantage du nouveau modèle est qu’il admet les connections entres les variables observables et qu’il prend en compte l’ordre des variables. Nous présentons un algorithme d’inférence Monte Carlo par chaîne de Markov avec saut réversible permettant l’apprentissage conjoint de graphes et d’ordres. L’évaluation est faite sur des problèmes d’estimations de densité et de test d’indépendance. Ce modèle est le premier modèle Bayésien nonparamétrique permettant d’apprendre des réseaux Bayésiens disposant d’une structure complètement arbitraire. / One of the important problems in machine learning is determining the complexity of the model to learn. Too much complexity leads to overfitting, which finds structures that do not actually exist in the data, while too low complexity leads to underfitting, which means that the expressiveness of the model is insufficient to capture all the structures present in the data. For some probabilistic models, the complexity depends on the introduction of one or more latent variables whose role is to explain the generative process of the data. There are various approaches to identify the appropriate number of latent variables of a model. This thesis covers various Bayesian nonparametric methods capable of determining the number of latent variables to be used and their dimensionality. The popularization of Bayesian nonparametric statistics in the machine learning community is fairly recent. Their main attraction is the fact that they offer highly flexible models and their complexity scales appropriately with the amount of available data. In recent years, research on Bayesian nonparametric learning methods have focused on three main aspects: the construction of new models, the development of inference algorithms and new applications. This thesis presents our contributions to these three topics of research in the context of learning latent variables models. Firstly, we introduce the Pitman-Yor process mixture of Gaussians, a model for learning infinite mixtures of Gaussians. We also present an inference algorithm to discover the latent components of the model and we evaluate it on two practical robotics applications. Our results demonstrate that the proposed approach outperforms, both in performance and flexibility, the traditional learning approaches. Secondly, we propose the extended cascading Indian buffet process, a Bayesian nonparametric probability distribution on the space of directed acyclic graphs. In the context of Bayesian networks, this prior is used to identify the presence of latent variables and the network structure among them. A Markov Chain Monte Carlo inference algorithm is presented and evaluated on structure identification problems and as well as density estimation problems. Lastly, we propose the Indian chefs process, a model more general than the extended cascading Indian buffet process for learning graphs and orders. The advantage of the new model is that it accepts connections among observable variables and it takes into account the order of the variables. We also present a reversible jump Markov Chain Monte Carlo inference algorithm which jointly learns graphs and orders. Experiments are conducted on density estimation problems and testing independence hypotheses. This model is the first Bayesian nonparametric model capable of learning Bayesian learning networks with completely arbitrary graph structures.
70

Apprentissage automatique avec garanties de généralisation à l'aide de méthodes d'ensemble maximisant le désaccord

Roy, Jean-Francis 03 May 2018 (has links)
Nous nous intéressons au domaine de l’apprentissage automatique, une branche de l’intelligence artificielle. Pour résoudre une tâche de classification, un algorithme d’apprentissage observe des données étiquetées et a comme objectif d’apprendre une fonction qui sera en mesure de classifier automatiquement les données qui lui seront présentées dans le futur. Plusieurs algorithmes classiques d’apprentissage cherchent à combiner des classificateurs simples en construisant avec ceux-ci un classificateur par vote de majorité. Dans cette thèse, nous explorons l’utilisation d’une borne sur le risque du classificateur par vote de majorité, nommée la C-borne. Celle-ci est définie en fonction de deux quantités : la performance individuelle des votants, et la corrélation de leurs erreurs (leur désaccord). Nous explorons d’une part son utilisation dans des bornes de généralisation des classificateurs par vote de majorité. D’autre part, nous l’étendons de la classification binaire vers un cadre généralisé de votes de majorité. Nous nous en inspirons finalement pour développer de nouveaux algorithmes d’apprentissage automatique, qui offrent des performances comparables aux algorithmes de l’état de l’art, en retournant des votes de majorité qui maximisent le désaccord entre les votants, tout en contrôlant la performance individuelle de ceux-ci. Les garanties de généralisation que nous développons dans cette thèse sont de la famille des bornes PAC-bayésiennes. Nous généralisons celles-ci en introduisant une borne générale, à partir de laquelle peuvent être retrouvées les bornes de la littérature. De cette même borne générale, nous introduisons des bornes de généralisation basées sur la C-borne. Nous simplifions également le processus de preuve des théorèmes PAC-bayésiens, nous permettant d’obtenir deux nouvelles familles de bornes. L’une est basée sur une différente notion de complexité, la divergence de Rényi plutôt que la divergence Kullback-Leibler classique, et l’autre est spécialisée au cadre de l’apprentissage transductif plutôt que l’apprentissage inductif. Les deux algorithmes d’apprentissage que nous introduisons, MinCq et CqBoost, retournent un classificateur par vote de majorité maximisant le désaccord des votants. Un hyperparamètre permet de directement contrôler leur performance individuelle. Ces deux algorithmes étant construits pour minimiser une borne PAC-bayésienne, ils sont rigoureusement justifiés théoriquement. À l’aide d’une évaluation empirique, nous montrons que MinCq et CqBoost ont une performance comparable aux algorithmes classiques de l’état de l’art. / We focus on machine learning, a branch of artificial intelligence. When solving a classification problem, a learning algorithm is provided labelled data and has the task of learning a function that will be able to automatically classify future, unseen data. Many classical learning algorithms are designed to combine simple classifiers by building a weighted majority vote classifier out of them. In this thesis, we extend the usage of the C-bound, bound on the risk of the majority vote classifier. This bound is defined using two quantities : the individual performance of the voters, and the correlation of their errors (their disagreement). First, we design majority vote generalization bounds based on the C-bound. Then, we extend this bound from binary classification to generalized majority votes. Finally, we develop new learning algorithms with state-of-the-art performance, by constructing majority votes that maximize the voters’ disagreement, while controlling their individual performance. The generalization guarantees that we develop in this thesis are in the family of PAC-Bayesian bounds. We generalize the PAC-Bayesian theory by introducing a general theorem, from which the classical bounds from the literature can be recovered. Using this same theorem, we introduce generalization bounds based on the C-bound. We also simplify the proof process of PAC-Bayesian theorems, easing the development of new families of bounds. We introduce two new families of PAC-Bayesian bounds. One is based on a different notion of complexity than usual bounds, the Rényi divergence, instead of the classical Kullback-Leibler divergence. The second family is specialized to transductive learning, instead of inductive learning. The two learning algorithms that we introduce, MinCq and CqBoost, output a majority vote classifier that maximizes the disagreement between voters. An hyperparameter of the algorithms gives a direct control over the individual performance of the voters. These two algorithms being designed to minimize PAC-Bayesian generalization bounds on the risk of the majority vote classifier, they come with rigorous theoretical guarantees. By performing an empirical evaluation, we show that MinCq and CqBoost perform as well as classical stateof- the-art algorithms.

Page generated in 0.1478 seconds