• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 252
  • 50
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 576
  • 576
  • 377
  • 364
  • 118
  • 117
  • 115
  • 105
  • 98
  • 94
  • 90
  • 89
  • 89
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Les circuits quantiques paramétrés universels comme modèles d'apprentissage automatique

Williams, Andrew 09 1900 (has links)
L'informatique quantique exploite les phénomènes de la théorie quantique pour le traitement de l'information, tandis que l'apprentissage automatique s'intéresse aux algorithmes qui peuvent s'améliorer en fonction des expériences passées. L'informatique quantique a produit des algorithmes qui dépassent de loin les capacités des ordinateurs classiques que nous utilisons tous les jours. Cependant, l'identification de nouveaux algorithmes quantiques fut moins prolifique que dans le cas classique. Ces dernières années, on a cherché à combiner l'informatique quantique et l'apprentissage automatique. Le cadre de l'apprentissage automatique a servi à apprendre les paramètres de circuits quantiques paramétrés dans l'espoir d'apprendre à résoudre des problèmes où les phénomènes quantiques peuvent aider grâce au traitement de l'information quantique. L'objectif principal de ce mémoire est de pousser plus loin cette idée d'apprentissage de circuits quantiques et de fonder solidement ses capacités en développant une architecture universelle de circuit quantique paramétré. La première contribution est une évaluation d'algorithmes d'optimisation itératifs actuels pour les circuits quantiques paramétrés en tant que modèles d'apprentissage automatique, ainsi que la présentation d'un algorithme d'optimisation itératif simple, mais robuste. La deuxième contribution est une architecture de circuit quantique dans laquelle une famille de petits circuits avec des connexions arbitraires peut être intégrée. / Quantum information processing leverages the phenomena of quantum theory for information processing, while machine learning concerns itself with algorithms that can improve based on past experiences. Quantum information processing has produced algorithms that go far past the capabilities of the classical computers we use every day. However, the identification of new quantum algorithms has been much slower than during the early days of classical computing. In recent years, there has been a push to combine quantum information processing and machine learning. The framework of machine learning has been used to learn quantum circuits in the hopes of learning to solve problems where quantum phenomena can help through the use of quantum information processing. The main goal of this thesis is to further push this idea of learning quantum circuits and to solidly ground its capabilities by developing a learnable parametrized universal quantum circuit. The first contribution is an assessment of current optimization methods for parametrized quantum circuits as machine learning models. The second contribution is a quantum circuit architecture in which a family of smaller circuits with arbitrary connections can be embedded.
82

L’estimation de distribution à l'aide d'un autoencodeur

Germain, Mathieu January 2015 (has links)
Ce mémoire introduit MADE, un nouveau modèle génératif spécifiquement développé pour l’estimation de distribution de probabilité pour données binaires. Ce modèle se base sur le simple autoencodeur et le modifie de telle sorte que sa sortie puisse être considérée comme des probabilités conditionnelles. Il a été testé sur une multitude d’ensembles de données et atteint des performances comparables à l’état de l’art, tout en étant plus rapide. Pour faciliter la description de ce modèle, plusieurs concepts de base de l’apprentissage automatique seront décrits ainsi que d’autres modèles d’estimation de distribution. Comme son nom l’indique, l’estimation de distribution est simplement la tâche d’estimer une distribution statistique à l’aide d’exemples tirés de cette dernière. Bien que certains considèrent ce problème comme étant le Saint Graal de l’apprentissage automatique, il a longtemps été négligé par le domaine puisqu’il était considéré trop difficile. Une raison pour laquelle cette tâche est tenue en si haute estime est qu’une fois la distribution des données connue, elle peut être utilisée pour réaliser la plupart des autres tâches de l’apprentissage automatique, de la classification en passant par la régression jusqu’à la génération. L’information est divisée en trois chapitres principaux. Le premier donne un survol des connaissances requises pour comprendre le nouveau modèle. Le deuxième présente les précurseurs qui ont tenu le titre de l’état de l’art et finalement le troisième explique en détail le modèle proposé.
83

Apprentissage automatique de relations d'équivalence sémantique à partir du Web

Duclaye, Florence 18 November 2003 (has links) (PDF)
Cette thèse s'inscrit dans le contexte d'un système de Questions-Réponses, capable de trouver automatiquement sur le Web la réponse à des questions factuelles traitant de n'importe quel sujet. L'une des manières d'améliorer la qualité des réponses fournies consiste à augmenter le taux de rappel du système. Pour cela, il est nécessaire de pouvoir identifier les réponses sous de multiples formulations possibles. A titre illustratif, la réponse à la question "Quelle est la hauteur de la Tour Eiffel ?" peut non seulement être exprimée de la même manière que dans la question ("la hauteur de la Tour Eiffel est 300 mètres"), mais également sous d'autres formes lexico-syntaxiques ("la Tour Eiffel culmine à 300 mètres", "la Tour Eiffel fait 300 mètres de haut", etc). On parle alors de paraphrases de la réponse. Le recensement manuel de ces paraphrases étant un travail long et coûteux, l'objectif de cette thèse est de concevoir et développer un mécanisme capable d'apprendre de façon automatique et faiblement supervisée les paraphrases possibles d'une réponse. Inscrite dans le vaste domaine de l'acquisition automatique de connaissances sémantiques, la méthode d'apprentissage présentée fait du Web son corpus privilégié, en particulier par la redondance et la variété linguistique des informations qu'il contient. Considéré comme un gigantesque graphe biparti représenté, d'une part, par des formulations (expressions d'une relation sémantique, comme "culmine à" ou "fait ... de haut") et d'autre part par des couples d'arguments (entités nommées régies par ces formulations, comme "Tour Eiffel - 300 mètres"), le Web s'avère propice à l'application de la citation de Firth, selon laquelle le sens d'un terme (respectivement d'une formulation, dans notre cas) est lié aux termes (respectivement aux arguments) avec lesquels il cooccurre. Ainsi, par un mécanisme itératif, le Web est échantillonné: les formulations (paraphrases potentielles) sont extraites par ancrage des arguments sur le Web et, inversement, de nouveaux arguments sont extraits par ancrages des formulations acquises. Afin de permettre à l'apprentissage de converger, une étape intermédiaire de classification statistique des données échantillonnées est nécessaire. Les résultats obtenus ont fait l'objet d'une évaluation empirique, ce qui permet en particulier de montrer la valeur ajoutée des paraphrases apprises sur le système de Questions-Réponses. De plus, ces résultats mettent en évidence quelques perspectives exploratoires qui permettront d'améliorer le processus d'apprentissage et de l'utiliser dans d'autres contextes applicatifs.
84

Apprentissage De Modèles Pour La Commande De La Mobilité Interne En Robotique

Salaün, Camille 30 August 2010 (has links) (PDF)
La robotique de service est un domaine émergent où il est nécessaire de commander des robots en interaction forte avec leur environnement. Ce travail présente une méthode adaptative de commande combinant de l'apprentissage de modèles de la mécanique à de la commande dans l'espace opérationnel de robots redondants. L'apprentissage des modèles cinématiques est obtenu soit par dérivation de modèles géométriques appris, soit par apprentissage direct. Ces modèles cinématiques, également appelés matrices Jacobiennes, peuvent être utilisés dans le calcul de pseudo-inverses ou de projecteurs pour la commande de robots. Cette combinaison de méthodes permet d'obtenir un contrôleur qui s'adapte à la géométrie du robot command é. En utilisant les mêmes algorithmes d'apprentissage, il est possible d'apprendre un modèle dynamique inverse du robot contr^olé de manière à le commander en couple plutôt qu'en vitesse, l'avantage étant de pouvoir s'adapter aux modifications dynamiques qui s'appliquent sur le robot comme par exemple l'application d'une force extérieure ou l'ajout d'un poids. Des expériences en simulation menées dans le cadre de cette thèse montrent comment réaliser plusieurs tâches hiérarchiques ou comment s'adapter à des perturbations avec des modèles appris. Des expériences sur le robot iCub ont également été menées afin de rendre compte de la plausibilité de l'approche proposée sur un système réel.
85

Reconnaissance d'Expressions Faciale 3D Basée sur l'Analyse de Forme et l'Apprentissage Automatique

Maalej, Ahmed 23 May 2012 (has links) (PDF)
La reconnaissance des expressions faciales est une tâche difficile, qui a reçu un intérêt croissant au sein de la communauté des chercheurs, et qui impacte les applications dans des domaines liés à l'interaction homme-machine (IHM). Dans le but de construire des systèmes IHM approchant le comportement humain et emotionnellement intelligents, les scientifiques essaient d'introduire la composante émotionnelle dans ce type de systèmes. Le développement récent des capteurs d'acquisition 3D a fait que les données 3D deviennent de plus en plus disponibles, et ce type de données vient pour remédier à des problèmes inhérents aux données 2D tels que les variations d'éclairage, de pose et d'échelle et de faible résolution. Plusieurs bases de données 3D du visage sont publiquement disponibles pour les chercheurs dans le domaine de la reconnaissance d'expression faciale leur permettant ainsi de valider et d'évaluer leurs approches. Cette thèse traite le problème la reconnaissance d'expressions faciale et propose une approche basée sur l'analyse de forme pour la reconnaissance d'expressions dans des cadres de données 3D statiques et 3D dynamiques. Tout d'abord, une représentation du modèle 3D du visage basée sur les courbes est proposée pour décrire les traits du visage. Puis, utilisant ces courbes, l'information de forme qui leur est liée est quantifiée en utilisant un cadre de travail basé sur la géométrie Riemannienne. Nous obtenons ainsi des scores de similarité entre les différentes formes locales du visage. Nous constituons, alors, l'ensemble des descripteurs d'expressions associées à chaque surface faciale. Enfin, ces descripteurs sont utilisés pour la classification l'expressions moyennant des algorithmes d'apprentissage automatique. Des expérimentations exhaustives sont alors entreprises pour valider notre approche. Des résultats de taux de reconnaissance d'expressions de l'ordre de 98.81% pour l'approche 3D statique, et de l'ordre de 93.83% pour l'approche 3D dynamique sont alors atteints, et sont comparés par rapport aux résultats des travaux de l'état de l'art.
86

Apprentissage probabiliste de similarités d'édition

Boyer, Laurent 24 March 2011 (has links) (PDF)
De nombreuses applications informatiques nécessitent l'utilisation de distances. Dans le cadre de données structurées, chaînes ou arbres, nous utilisons majoritairement la distance d'édition. Celle-ci correspond au nombre minimal d'opérations d'édition (insertion, délétion et substitution) nécessaire pour transformer la première donnée en la seconde. Suivant l'application traitée, il est possible de paramétrer la distance d'édition en associant à chaque opération d'édition un poids. Dans le cadre de ce manuscrit, nous proposons une technique d'apprentissage automatique supervisée pour apprendre les poids de la distance décrite précédemment. L'algorithme utilisé, appelé Expectation-Maximisation, maximise la vraisemblance des paramètres du modèle à l'aide d'un échantillon d'apprentissage composé de paires d'exemples considérés comme similaires. La première contribution de ce manuscrit est une extension de précédents travaux sur les chaînes aux arbres sous la forme de transducteur à un unique état. Nous montrons sur une tâche de reconnaissance de caractères manuscrits, l'efficacité de l'apprentissage par rapport à l'utilisation de poids non appris. La seconde est une approche sur les chaînes sous contraintes. Le modèle est représenté par un ensemble fini d'états dans lequel les transitions sont contraintes. Une contrainte est représentée par un ensemble fini de fonctions booléennes définies sur la chaîne d'entrée et une de ses positions. Nous utilisons notre modèle pour aborder une application de recherche de sites de facteur de transcription dans des séquences génomiques
87

Classification de bases de données déséquilibrées par des règles de décomposition / Handling imbalanced datasets by reconstruction rules in decomposition schemes

D'Ambrosio, Roberto 07 March 2014 (has links)
Le déséquilibre entre la distribution des a priori est rencontré dans un nombre très large de domaines. Les algorithmes d’apprentissage conventionnels sont moins efficaces dans la prévision d’échantillons appartenant aux classes minoritaires. Notre but est de développer une règle de reconstruction adaptée aux catégories de données biaisées. Nous proposons une nouvelle règle, la Reconstruction Rule par sélection, qui, dans le schéma ‘One-per-Class’, utilise la fiabilité, des étiquettes et des distributions a priori pour permettre de calculer une décision finale. Les tests démontrent que la performance du système s’améliore en utilisant cette règle plutôt que des règles classiques. Nous étudions également les règles dans l’ ‘Error Correcting Output Code’ (ECOC) décomposition. Inspiré par une règle de reconstitution de données statistiques conçue pour le ‘One-per-Class’ et ‘Pair-Wise Coupling’ des approches sur la décomposition, nous avons développé une règle qui s’applique à la régression ‘softmax’ sur la fiabilité afin d’évaluer la classification finale. Les résultats montrent que ce choix améliore les performances avec respect de la règle statistique existante et des règles de reconstructions classiques. Sur ce thème d’estimation fiable nous remarquons que peu de travaux ont porté sur l’efficacité de l’estimation postérieure dans le cadre de boosting. Suivant ce raisonnement, nous développons une estimation postérieure efficace en boosting Nearest Neighbors. Utilisant Universal Nearest Neighbours classification nous prouvons qu’il existe une sous-catégorie de fonctions, dont la minimisation apporte statistiquement de simples et efficaces estimateurs de Bayes postérieurs. / Disproportion among class priors is encountered in a large number of domains making conventional learning algorithms less effective in predicting samples belonging to the minority classes. We aim at developing a reconstruction rule suited to multiclass skewed data. In performing this task we use the classification reliability that conveys useful information on the goodness of classification acts. In the framework of One-per-Class decomposition scheme we design a novel reconstruction rule, Reconstruction Rule by Selection, which uses classifiers reliabilities, crisp labels and a-priori distributions to compute the final decision. Tests show that system performance improves using this rule rather than using well-established reconstruction rules. We investigate also the rules in the Error Correcting Output Code (ECOC) decomposition framework. Inspired by a statistical reconstruction rule designed for the One-per-Class and Pair-Wise Coupling decomposition approaches, we have developed a rule that applies softmax regression on reliability outputs in order to estimate the final classification. Results show that this choice improves the performances with respect to the existing statistical rule and to well-established reconstruction rules. On the topic of reliability estimation we notice that small attention has been given to efficient posteriors estimation in the boosting framework. On this reason we develop an efficient posteriors estimator by boosting Nearest Neighbors. Using Universal Nearest Neighbours classifier we prove that a sub-class of surrogate losses exists, whose minimization brings simple and statistically efficient estimators for Bayes posteriors.
88

Maintenance automatique du réseau programmable d'accès optique de très haut débit / Autonomic maintenance of high programmable optical access network

Frigui, Nejm Eddine 21 January 2019 (has links)
Les réseaux optiques passifs (PONs, Passive Optical Networks) représentant l’une des solutions les plus performantes du réseau d’accès FTTH ont été largement déployés par les opérateurs grâce à leur capacité d’offrir des services de très haut débit. Cependant, en raison de la dynamicité du trafic des différents clients, ces réseaux doivent s’appuyer sur un mécanisme efficace pour l’allocation de ressources, plus particulièrement dans le sens montant. Ce mécanisme est actuellement limité par la nature statique des paramètres SLA (Service Level Agreement). Ceci peut avoir une influence négative sur la qualité de service ressentie par les utilisateurs. L’objectif de cette thèse est de proposer une nouvelle architecture pour optimiser l’allocation de ressources dans les réseaux PON tout en agissant uniquement sur les paramètres SLA, désignés comme des paramètres gérables par l’opérateur. Des techniques de classification basées sur l’apprentissage automatique et la prédiction sont utilisées pour analyser le comportement des différents utilisateurs et déterminer leurs tendances de trafic. Un ajustement dynamique sur la base du concept autonomique de certains paramètres SLA est ensuite effectué afin de maximiser la satisfaction globale des clients vis-à-vis du réseau. / Passive Optical Network (PON) representing one of the most attractive FTTH access network solutions, have been widely deployed for several years thanks to their ability to offer high speed services. However, due to the dynamicity of users traffic patterns, PONs need to rely on an efficient upstream bandwidth allocation mechanism. This mechanism is currently limited by the static nature of Service Level Agreement (SLA) parameters which can lead to an unoptimized bandwidth allocation in the network. The objective of this thesis is to propose a new management architecture for optimizing the upstream bandwidth allocation in PON while acting only on manageable parameters to allow the involvement of self-decision elements into the network. To achieve this, classification techniques based on machine learning approaches are used to analyze the behavior of PON users and to specify their upstream data transmission tendency. A dynamic adjustment of some SLA parameters is then performed to maximize the overall customers’ satisfaction with the network.
89

Conceptual Approaches for Securing Networks and Systems / Des approches conceptuelles pour sécuriser des réseaux et des systèmes

Becker, Sheila 16 October 2012 (has links)
Les communications pair-à-pair en temps réel ainsi que les applications de transmissions multi-média peuvent améliorer leurs performances en utilisant des services d'estimation de topologie au niveau d'application. Les systèmes aux coordonnées virtuelles représentent un tel service. A l'aide d'un tel système les noeuds d'un réseau pair-à-pair prédisent les latences entre différents noeuds sans nécessiter des mesures étendues. Malheureusement, prédire les latences correctement requis que les noeuds soient honnêtes et coopératifs. La recherche récente propose des techniques pour atténuer des attaques basiques (inflation, déflation, oscillation) où les attaquants conduisent un type d'attaque seulement. Dans ce travail, nous définissons et utilisons un modèle basé sur la théorie des jeux pour identifier la meilleure solution pour défendre le système en supposant que les attaquants utilisent l'attaque la plus pire. Ce modèle nous aide à démontrer l'impact et l'efficacité des attaques et défenses en utilisant un système de coordonnées virtuelles répondu. De même, nous explorons des techniques de l'apprentissage automatique supervisé pour détecter des attaques plus lentes et subtiles, comme l'attaque à l'inflation-lente et l'attaque de dégroupage de réseau qui sont capable de contourner des techniques de défenses existantes. Nous évaluons nos techniques sur le système Vivaldi contre des stratégies d'attaques plus complexes sur des simulations ainsi que des déploiements Internet / Peer-to-peer real-time communication and media streaming applications optimize their performance by using application-level topology estimation services such as virtual coordinate systems. Virtual coordinate systems allow nodes in a peer-to-peer network to accurately predict latency between arbitrary nodes without the need of performing extensive measurements. However, systems that leverage virtual coordinates as supporting building blocks, are prone to attacks conducted by compromised nodes that aim at disrupting, eavesdropping, or mangling with the underlying communications. Recent research proposed techniques to mitigate basic attacks (inflation, deflation, oscillation) considering a single attack strategy model where attackers perform only one type of attack. In this work, we define and use a game theory framework in order to identify the best attack and defense strategies assuming that the attacker is aware of the defense mechanisms. Our approach leverages concepts derived from the Nash equilibrium to model more powerful adversaries. We apply the game theory framework to demonstrate the impact and efficiency of these attack and defense strategies using a well-known virtual coordinate system and real-life Internet data sets. Thereafter, we explore supervised machine learning techniques to mitigate more subtle yet highly effective attacks (frog-boiling, network-partition) that are able to bypass existing defenses. We evaluate our techniques on the Vivaldi system against a more complex attack strategy model, where attackers perform sequences of all known attacks against virtual coordinate systems, using both simulations and Internet deployments
90

Évaluation de la confiance dans la collaboration à large échelle / Trust assessment in large-scale collaborative systems

Dang, Quang Vinh 22 January 2018 (has links)
Les systèmes collaboratifs à large échelle, où un grand nombre d’utilisateurs collaborent pour réaliser une tâche partagée, attirent beaucoup l’attention des milieux industriels et académiques. Bien que la confiance soit un facteur primordial pour le succès d’une telle collaboration, il est difficile pour les utilisateurs finaux d’évaluer manuellement le niveau de confiance envers chaque partenaire. Dans cette thèse, nous étudions le problème de l’évaluation de la confiance et cherchons à concevoir un modèle de confiance informatique dédiés aux systèmes collaboratifs. Nos travaux s’organisent autour des trois questions de recherche suivantes. 1. Quel est l’effet du déploiement d’un modèle de confiance et de la représentation aux utilisateurs des scores obtenus pour chaque partenaire ? Nous avons conçu et organisé une expérience utilisateur basée sur le jeu de confiance qui est un protocole d’échange d’argent en environnement contrôlé dans lequel nous avons introduit des notes de confiance pour les utilisateurs. L’analyse détaillée du comportement des utilisateurs montre que: (i) la présentation d’un score de confiance aux utilisateurs encourage la collaboration entre eux de manière significative, et ce, à un niveau similaire à celui de l’affichage du surnom des participants, et (ii) les utilisateurs se conforment au score de confiance dans leur prise de décision concernant l’échange monétaire. Les résultats suggèrent donc qu’un modèle de confiance peut être déployé dans les systèmes collaboratifs afin d’assister les utilisateurs. 2. Comment calculer le score de confiance entre des utilisateurs qui ont déjà collaboré ? Nous avons conçu un modèle de confiance pour les jeux de confiance répétés qui calcule les scores de confiance des utilisateurs en fonction de leur comportement passé. Nous avons validé notre modèle de confiance en relativement à: (i) des données simulées, (ii) de l’opinion humaine et (iii) des données expérimentales réelles. Nous avons appliqué notre modèle de confiance à Wikipédia en utilisant la qualité des articles de Wikipédia comme mesure de contribution. Nous avons proposé trois algorithmes d’apprentissage automatique pour évaluer la qualité des articles de Wikipédia: l’un est basé sur une forêt d’arbres décisionnels tandis que les deux autres sont basés sur des méthodes d’apprentissage profond. 3. Comment prédire la relation de confiance entre des utilisateurs qui n’ont pas encore interagi ? Etant donné un réseau dans lequel les liens représentent les relations de confiance/défiance entre utilisateurs, nous cherchons à prévoir les relations futures. Nous avons proposé un algorithme qui prend en compte les informations temporelles relatives à l’établissement des liens dans le réseau pour prédire la relation future de confiance/défiance des utilisateurs. L’algorithme proposé surpasse les approches de la littérature pour des jeux de données réels provenant de réseaux sociaux dirigés et signés / Large-scale collaborative systems wherein a large number of users collaborate to perform a shared task attract a lot of attention from both academic and industry. Trust is an important factor for the success of a large-scale collaboration. It is difficult for end-users to manually assess the trust level of each partner in this collaboration. We study the trust assessment problem and aim to design a computational trust model for collaborative systems. We focused on three research questions. 1. What is the effect of deploying a trust model and showing trust scores of partners to users? We designed and organized a user-experiment based on trust game, a well-known money-exchange lab-control protocol, wherein we introduced user trust scores. Our comprehensive analysis on user behavior proved that: (i) showing trust score to users encourages collaboration between them significantly at a similar level with showing nick- name, and (ii) users follow the trust score in decision-making. The results suggest that a trust model can be deployed in collaborative systems to assist users. 2. How to calculate trust score between users that experienced a collaboration? We designed a trust model for repeated trust game that computes user trust scores based on their past behavior. We validated our trust model against: (i) simulated data, (ii) human opinion, and (iii) real-world experimental data. We extended our trust model to Wikipedia based on user contributions to the quality of the edited Wikipedia articles. We proposed three machine learning approaches to assess the quality of Wikipedia articles: the first one based on random forest with manually-designed features while the other two ones based on deep learning methods. 3. How to predict trust relation between users that did not interact in the past? Given a network in which the links represent the trust/distrust relations between users, we aim to predict future relations. We proposed an algorithm that takes into account the established time information of the links in the network to predict future user trust/distrust relationships. Our algorithm outperforms state-of-the-art approaches on real-world signed directed social network datasets

Page generated in 0.0941 seconds