Spelling suggestions: "subject:"apprentissage automatique"" "subject:"dapprentissage automatique""
91 |
Contrôle des performances et conciliation d’erreurs dans les décodeurs d’image / Performance monitoring and errors reconciliation in image decodersTakam tchendjou, Ghislain 12 December 2018 (has links)
Cette thèse porte sur le développement et l’implémentation des algorithmes de détection et de correction des erreurs dans les images, en vue de contrôler la qualité des images produites en sortie des décodeurs numériques. Pour atteindre les objectifs visés dans cette étude, nous avons commencé par faire l’état de lieu de l’existant. L’examen critique des approches en usage a justifié la construction d’un ensemble de méthodes objectives d’évaluation de la qualité visuelle des images, basées sur des méthodes d’apprentissage automatique. Ces algorithmes prennent en entrées un ensemble de caractéristiques ou de métriques extraites des images. En fonction de ces caractéristiques, et de la disponibilité ou non d’une image de référence, deux sortes de mesures objectives ont été élaborées : la première basée sur des métriques avec référence, et la seconde basée sur des métriques sans référence ; toutes les deux à distorsions non spécifiques. En plus de ces méthodes d’évaluation objective, une méthode d’évaluation et d’amélioration de la qualité des images basée sur la détection et la correction des pixels défectueux dans les images a été mise en œuvre. Les applications ont contribué à affiner aussi bien les méthodes d’évaluation de la qualité visuelle des images que la construction des algorithmes objectifs de détection et de correction des pixels défectueux par rapport aux diverses méthodes actuellement en usage. Une implémentation sur cartes FPGA des techniques développées a été réalisée pour intégrer les modèles présentant les meilleures performances dans de la phase de simulation. / This thesis deals with the development and implementation of error detection and correction algorithms in images, in order to control the quality of produced images at the output of digital decoders. To achieve the objectives of this work, we first study the state-of the-art of the existing approaches. Examination of classically used approaches justified the study of a set of objective methods for evaluating the visual quality of images, based on machine learning methods. These algorithms take as inputs a set of characteristics or metrics extracted from the images. Depending on the characteristics extracted from the images, and the availability or not of a reference image, two kinds of objective evaluation methods have been developed: the first based on full reference metrics, and the second based on no-reference metrics; both of them with non-specific distortions. In addition to these objective evaluation methods, a method of evaluating and improving the quality of the images based on the detection and correction of the defective pixels in the images has been implemented. The proposed results have contributed to refining visual image quality assessment methods as well as the construction of objective algorithms for detecting and correcting defective pixels compared to the various currently used methods. An implementation on an FPGA has been carried out to integrate the models with the best performances during the simulation phase.
|
92 |
Perspectives de méta-analyse pour un environnement d'aide à la simulation et prédiction / Meta-analysis perspectives toward assistance in prediction and simulationRaynaut, William 12 January 2018 (has links)
L'émergence du phénomène Big Data a créé un besoin grandissant en analyse de données, mais, bien souvent, cette analyse est conduite par des experts de différents domaines ayant peu d'expérience en science des données. On s'intéresse donc à ce besoin d'assistance à l'analyse de données, qui commence tout juste à recevoir une certaine attention des communautés scientifiques, donnant naissance au domaine de la méta-analyse. Les premières approches du sujet se révélant souvent similaires et peu abouties, on tente en particulier de permettre de nouvelles approches de méta-analyse pour adresser ce problème d'assistance à l'analyse de données. Pour ce faire, une première étape cruciale est de déterminer ce qu'est une méta-analyse performante, aucun standard n'ayant encore été établi dans ce domaine relativement neuf. On propose ainsi un cadre générique d'évaluation de méta-analyse, permettant de comparer et caractériser finement diverses techniques de méta- analyse. Ensuite, afin d'ouvrir de nouvelles voies, on s'intéresse à un verrou majeur de la méta-analyse : la caractérisation de jeu de données. On propose et évalue alors une caractérisation par dissimilarité faisant usage de toute l'information disponible pour autoriser de nouvelles approches de méta-analyse. L'utilisation de cette caractérisation par dissimilarité permettant de recommander facilement des processus d'analyse de données complets, on décrit enfin les nouvelles approches de méta-analyses rendues possibles, ainsi que les processus afférents d'assistance à l'analyse de données. / The emergence of the big data phenomenon has led to increasing demands in data analysis, which most often are conducted by other domains experts with little experience in data science. We then consider this important demand in intelligent assistance to data analysis, which receives an increasing attention from the scientific community. The first takes on the subject often possessing similar shortcomings, we propose to address it through new processes of meta-analysis. No evaluation standard having yet been set in this relatively new domain, we first propose a meta-analysis evaluation framework that will allow us to test and compare the developed methods. In order to open new approaches of meta-analysis, we then consider one of its recurring issue: dataset characterization. We then propose and evaluate such a characterization, consisting in a dissimilarity between datasets making use of a precise topological description to compare them. This dissimilarity allows a new meta-analysis approach producing recommendations of complete data analysis processes, which we then evaluate on a proof of concept. We thus detail the proposed methods of meta-analysis, and the associated process of assistance to data analysis.
|
93 |
Self-Adaptive Bandwidth Control for Balanced QoS and Energy Aware Optimization in Wireless Sensor Network / Contrôle de bande passante auto-adaptatif pour une qualité de service équilibrée et une optimisation énergétique optimisée dans le réseau de capteurs sans filLiu, Zongyi 04 July 2017 (has links)
Dans le domaine des réseaux de capteurs multimédias sans fil (WMSN), le flux fortement saturé augmente la probabilité de collision et de congestion dans la transmission de données, ce qui dégrade considérablement la performance de la qualité de service (QoS). La technique de déploiement multicanaux est souvent appliquée à la transmission en parallèle pour garantir la QoS. Cependant, comment faire le compromis entre l'exigence QoS et l'efficacité énergétique est un défi pour WMSN énergie-limité. L'analyse théorique de la couche MAC et de la structure de la couche PHY basée sur la norme IEEE 802.15.4, vise à étudier le modèle analytique cross-layer afin de mieux comprendre la relation entre les paramètres du réseau de capteurs et la performance, ouvrant ainsi la voie à de nouvelles améliorations. Recherche d'optimisation multi-canaux. Trouver un indicateur de performance efficace et concevoir une méthode de collecte ou d'estimation de performance efficace basée sur les métriques correspondantes, qui pourraient être utilisées comme entrée de paramètre du mécanisme d'affectation multicanaux. Le système de contrôle dynamique complet est conçu pour une tâche d'attribution multicanal basée sur des techniques d'intelligence de calcul léger et efficace. Nous présentons un mécanisme d'attribution multicouches à bande passante dynamique à fuzzy (MCDB_FLS). La bande passante proactive disponible dans la couche croisée est estimée comme paramètre pour le contrôle d'admission de déploiement multicanal. Une approche axée sur l'apprentissage par renforcement est proposée pour une prise de décision judicieuse dans la mission d'allocation multicanaux. En outre, le modèle de seuil de bande passante basé sur la logique floue fournit une optimisation dynamique sur le contrôle d'admission du système. Les simulations montrent que le MCDB_FLS fonctionne mieux que la référence sur les mesures de QoS et l'efficacité énergétique, réalise le compromis entre l'efficacité énergétique et l'amélioration de la QoS. Enfin, nous introduisons l'intégration de l'approche incrémentielle d'apprentissage automatique dans le mécanisme d'affectation multicanaux avec la Deep Q Network (DQMC). En outre, l'initialisation du poids par action est implémentée sur la base d'un classificateur d'apprentissage supervisé multi-classes avec une approche par empilement. DQMC améliorer la capacité d'auto-adaptatif et de contrôle intelligent pour apprendre le modèle de l'environnement différent de multi-tâches WMSNs. / In the Wireless Multimedia Sensor Networks (WMSNs) field, highly saturated flow increases the probability of collision and congestion in data transmission which dramatically degrade the performance of Quality of Service (QoS). Multi-channels deployment technique is often applied to parallel transmission for QoS guarantee. However, how to make trade-off between QoS requirement and energy efficiency is a challenges to energy-constrained WMSNs. Theoretical analysis of MAC layer and PHY layer structure based on IEEE 802.15.4 standard, aim to study on the cross-layer analytical model in order to provide stronger understanding on the relationship between sensor network parameters and performance, pave the way for new enhancements in succedent multi-channel optimization research. Find effective performance indicator and design efficient performance collection or estimation approach based on the corresponding metrics, which could be used as the parameter input of multi-channel assignment mechanism. Comprehensive dynamically control system is designed for multi-channel assignment task based on light weight and high efficient computation intelligence techniques. We present a fuzzy-based dynamic bandwidth multi-channel assignment mechanism (MCDB_FLS). Cross-layer proactive available bandwidth is estimated as parameters for multi-channel deployment admission control. Reinforcement learning-based approach is proposed for more wisely decision-making in multi- channel allocation mission. Furthermore, fuzzy logic-based bandwidth threshold model provides dynamic optimization on system admission control. Simulations show the MCDB_FLS performs better than benchmark on the metrics of QoS and energy efficiency, achieves the trade-off between energy efficiency and QoS improvement. Finally, we introduce the integration of incremental machine learning approach into multi-channel assignment mechanism with Deep Q Network reinforcement learning method (DQMC). Besides, fully action weight initialization is implemented based on multi-class supervised learning classifier with stacking ensemble approach. DQMC improve the ability of self-adaptive and smart control to learn pattern from different environment of multi-tasks WMSNs.
|
94 |
Information quality in online social media and big data collection : an example of Twitter spam detection / Qualité de l'information dans les médias sociaux en ligne et collection de big data : un exemple de détection de spam sur twitterWashha, Mahdi 17 July 2018 (has links)
La popularité des médias sociaux en ligne (Online Social Media - OSM) est fortement liée à la qualité du contenu généré par l'utilisateur (User Generated Content - UGC) et la protection de la vie privée des utilisateurs. En se basant sur la définition de la qualité de l'information, comme son aptitude à être exploitée, la facilité d'utilisation des OSM soulève de nombreux problèmes en termes de la qualité de l'information ce qui impacte les performances des applications exploitant ces OSM. Ces problèmes sont causés par des individus mal intentionnés (nommés spammeurs) qui utilisent les OSM pour disséminer des fausses informations et/ou des informations indésirables telles que les contenus commerciaux illégaux. La propagation et la diffusion de telle information, dit spam, entraînent d'énormes problèmes affectant la qualité de services proposés par les OSM. La majorité des OSM (comme Facebook, Twitter, etc.) sont quotidiennement attaquées par un énorme nombre d'utilisateurs mal intentionnés. Cependant, les techniques de filtrage adoptées par les OSM se sont avérées inefficaces dans le traitement de ce type d'information bruitée, nécessitant plusieurs semaines ou voir plusieurs mois pour filtrer l'information spam. En effet, plusieurs défis doivent être surmontées pour réaliser une méthode de filtrage de l'information bruitée . Les défis majeurs sous-jacents à cette problématique peuvent être résumés par : (i) données de masse ; (ii) vie privée et sécurité ; (iii) hétérogénéité des structures dans les réseaux sociaux ; (iv) diversité des formats du UGC ; (v) subjectivité et objectivité. Notre travail s'inscrit dans le cadre de l'amélioration de la qualité des contenus en termes de messages partagés (contenu spam) et de profils des utilisateurs (spammeurs) sur les OSM en abordant en détail les défis susmentionnés. Comme le spam social est le problème le plus récurant qui apparaît sur les OSM, nous proposons deux approches génériques pour détecter et filtrer le contenu spam : i) La première approche consiste à détecter le contenu spam (par exemple, les tweets spam) dans un flux en temps réel. ii) La seconde approche est dédiée au traitement d'un grand volume des données relatives aux profils utilisateurs des spammeurs (par exemple, les comptes Twitter). / The popularity of OSM is mainly conditioned by the integrity and the quality of UGC as well as the protection of users' privacy. Based on the definition of information quality as fitness for use, the high usability and accessibility of OSM have exposed many information quality (IQ) problems which consequently decrease the performance of OSM dependent applications. Such problems are caused by ill-intentioned individuals who misuse OSM services to spread different kinds of noisy information, including fake information, illegal commercial content, drug sales, mal- ware downloads, and phishing links. The propagation and spreading of noisy information cause enormous drawbacks related to resources consumptions, decreasing quality of service of OSM-based applications, and spending human efforts. The majority of popular social networks (e.g., Facebook, Twitter, etc) over the Web 2.0 is daily attacked by an enormous number of ill-intentioned users. However, those popular social networks are ineffective in handling the noisy information, requiring several weeks or months to detect them. Moreover, different challenges stand in front of building a complete OSM-based noisy information filtering methods that can overcome the shortcomings of OSM information filters. These challenges are summarized in: (i) big data; (ii) privacy and security; (iii) structure heterogeneity; (iv) UGC format diversity; (v) subjectivity and objectivity; (vi) and service limitations In this thesis, we focus on increasing the quality of social UGC that are published and publicly accessible in forms of posts and profiles over OSNs through addressing in-depth the stated serious challenges. As the social spam is the most common IQ problem appearing over the OSM, we introduce a design of two generic approaches for detecting and filtering out the spam content. The first approach is for detecting the spam posts (e.g., spam tweets) in a real-time stream, while the other approach is dedicated for handling a big data collection of social profiles (e.g., Twitter accounts).
|
95 |
Self Exploration of Sensorimotor Spaces in Robots. / L’auto-exploration des espaces sensorimoteurs chez les robotsBenureau, Fabien 18 May 2015 (has links)
La robotique développementale a entrepris, au courant des quinze dernières années,d’étudier les processus développementaux, similaires à ceux des systèmes biologiques,chez les robots. Le but est de créer des robots qui ont une enfance—qui rampent avant d’essayer de courir, qui jouent avant de travailler—et qui basent leurs décisions sur l’expérience de toute une vie, incarnés dans le monde réel.Dans ce contexte, cette thèse étudie l’exploration sensorimotrice—la découverte pour un robot de son propre corps et de son environnement proche—pendant les premiers stage du développement, lorsque qu’aucune expérience préalable du monde n’est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une diversité d’effets dans un environnement inconnu. Cette approche se distingue par son absence de fonction de récompense ou de fitness définie par un expert, la rendant particulièrement apte à être intégrée sur des robots auto-suffisants.Dans une première partie, l’approche est motivée et le problème de l’exploration est formalisé, avec la définition de mesures quantitatives pour évaluer le comportement des algorithmes et d’un cadre architectural pour la création de ces derniers. Via l’examen détaillé de l’exemple d’un bras robot à multiple degrés de liberté, la thèse explore quelques unes des problématiques fondamentales que l’exploration sensorimotrice pose, comme la haute dimensionnalité et la redondance sensorimotrice. Cela est fait en particulier via la comparaison entre deux stratégies d’exploration: le babillage moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés tour à tour et leur comportement est évalué empiriquement, étudiant les interactions qui naissent avec les contraintes développementales, les démonstrations externes et les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent se révéler terriblement inefficaces lorsque leurs capacités d’apprentissage ne sont pas adaptés aux caractéristiques de leur environnement, une architecture est proposée qui peut dynamiquement choisir la stratégie d’exploration la plus adaptée parmi un ensemble de stratégies. Mais même avec de bons algorithmes, l’exploration sensorimotrice reste une entreprise coûteuse—un problème important, étant donné que les robots font face à des contraintes fortes sur la quantité de données qu’ils peuvent extraire de leur environnement;chaque observation prenant un temps non-négligeable à récupérer. [...] À travers cette thèse, les contributions les plus importantes sont les descriptions algorithmiques et les résultats expérimentaux. De manière à permettre la reproduction et la réexamination sans contrainte de tous les résultats, l’ensemble du code est mis à disposition. L’exploration sensorimotrice est un mécanisme fondamental du développement des systèmes biologiques. La séparer délibérément des mécanismes d’apprentissage et l’étudier pour elle-même dans cette thèse permet d’éclairer des problèmes importants que les robots se développant seuls seront amenés à affronter. / Developmental robotics has begun in the last fifteen years to study robots that havea childhood—crawling before trying to run, playing before being useful—and that are basing their decisions upon a lifelong and embodied experience of the real-world. In this context, this thesis studies sensorimotor exploration—the discovery of a robot’s own body and proximal environment—during the early developmental stages, when no prior experience of the world is available. Specifically, we investigate how to generate a diversity of effects in an unknown environment. This approach distinguishes itself by its lack of user-defined reward or fitness function, making it especially suited for integration in self-sufficient platforms. In a first part, we motivate our approach, formalize the exploration problem, define quantitative measures to assess performance, and propose an architectural framework to devise algorithms. through the extensive examination of a multi-joint arm example, we explore some of the fundamental challenges that sensorimotor exploration faces, such as high-dimensionality and sensorimotor redundancy, in particular through a comparison between motor and goal babbling exploration strategies. We propose several algorithms and empirically study their behaviour, investigating the interactions with developmental constraints, external demonstrations and biologicallyinspired motor synergies. Furthermore, because even efficient algorithms can provide disastrous performance when their learning abilities do not align with the environment’s characteristics, we propose an architecture that can dynamically discriminate among a set of exploration strategies. Even with good algorithms, sensorimotor exploration is still an expensive proposition— a problem since robots inherently face constraints on the amount of data they are able to gather; each observation takes a non-negligible time to collect. [...] Throughout this thesis, our core contributions are algorithms description and empirical results. In order to allow unrestricted examination and reproduction of all our results, the entire code is made available. Sensorimotor exploration is a fundamental developmental mechanism of biological systems. By decoupling it from learning and studying it in its own right in this thesis, we engage in an approach that casts light on important problems facing robots developing on their own.
|
96 |
Commande pour l'optique adaptative : du cas linéaire au cas non linéaire / Adaptive optics control design : from the linear to the nonlinear caseAbelli, Andrea 09 April 2013 (has links)
Cette thèse étudie les aspects de contrôle d'applications optique adaptative, une technologie utilisée pour améliorer la performance des systèmes optiques en réduisant l'effet des distorsions de front d'onde, à l'imagerie haute résolution angulaire. Le problème Adaptive Optics contrôle est présenté à travers une revue de la littérature. Par conséquent, la conception d'un contrôleur de rétroaction est adressée, d'un point de vue moderne de contrôle, au moyen de la méthode de contrôle Linéaire Quadratique Gaussienne. L'approche proposée met l'accent sur la capacité de la boucle d'optique adaptative de rejeter l'aberration atmosphérique. On dérive un système de représentation diagonale état-espace qui sépare nettement la dynamique de la plante (miroir déformable et le capteur de front d'onde) de la dynamique des perturbations (modèle atmosphérique). Cette représentation facilite la résolution numérique du problème. Une analyse de fréquence est effectuée pour vérifier les spécifications de performance et de robustesse de la multiple-input multiple-système de rétroaction de sortie. De plus, nous analysons les performances et la robustesse de LQG contrôle basé par rapport au témoin intégrante classique, au moyen de bout en bout des simulations et en considérant les différents niveaux de bruit du capteur de front d'onde. Durant le-ciel observations, l'énergie turbulente et la vitesse relative de chaque couche de l'atmosphère peut changer rapidement dégrader l'estimation de front d'onde. Pour cette raison, un algorithme de modèle numérique de conception garantissant une performance satisfaisante rejet de perturbations, même dans le cas de variables dans le temps caractéristique de la turbulence est dérivé. Expériences numériques en utilisant les CAOS du progiciel ont été menées pour démontrer la robustesse de chaque approche proposée. Compte tenu de la conviction auteur que l'avenir de l'optique adaptative repose également sur le développement d'un plus sophistiqués (par exemple, non linéaire) des modèles, une quantité importante de travail a été consacrée à l'étude de deux classes de méthodes de reconnaissance des formes répandues. À savoir Support Vector Machines et méthodes du noyau, dont la régression des capacités sont exploitées dans la solution du problème non linéaire suivi optimal. En ce qui concerne Support Vector Machines, grâce à la théorie du contrôle optimal singulier, les contraintes se relâchent permettant une résolution plus facile et plus rapide numérique du problème d'optimisation. Alors que, dans le cas totalement déterministe du contrôleur Support Vector résulte plus simple à synthétiser. En référence aux méthodes du noyau, une tentative originale de réunir leurs forces de régression avec le concept de contrôle adaptatif inverse est présentée. Le noyau récursif des moindres carrés algorithme est utilisé pour mettre en œuvre un contrôleur adaptatif inverse capable de forcer une dynamique non linéaire appropriés pour suivre une sortie désirée. Cette méthode très peut également être utilisé pour vérifier si une trajectoire donnée arbitraire est une sortie admissible pour le système non linéaire à l'étude. Un tel algorithme innovant pourrait être utilement appliquée dans les travaux futurs, le contrôle de Tip-Tilt miroirs. Finalement, une première esquisse du cadre théorique soutenant l'utilisation du contrôle adaptatif inverse pour la solution du problème de suivi général est donné. Après l'introduction de la formulation mathématique du problème de suivi et les définitions nécessaires mathématiques, des conditions suffisantes et nécessaires (cas linéaire) et des conditions suffisantes (cas non-linéaire) de l'existence de la solution sont dérivés. / His thesis investigates the control aspects of Adaptive Optics applications, a technology used to improve the performance of optical systems by reducing the effect of wavefront distortions, to high angular resolution imaging. The Adaptive Optics control problem is presented through a survey of the literature. Consequently, the design of a feedback controller is addressed, from a modern control point of view, by means of the Linear Quadratic Gaussian control methodology. The proposed approach emphasizes the ability of the adaptive optics loop to reject the atmospheric aberration. We derive a diagonal state-space system representation which clearly separates the dynamics of the plant (deformable mirror and wavefront sensor) from the disturbance dynamics (atmospheric model). This representation facilitates the numerical resolution of the problem. A frequency analysis is carried out to check the performance and robustness specifications of the multiple-input multiple-output feedback system. Moreover, we analyze the performance and the robustness of LQG-based control compared to classic integral control, by means of end-to-end simulations and by considering different levels of wavefront sensor noise. During on-sky observations, the turbulent energy and relative speed of each atmospheric layer can change rapidly degrading the wavefront estimate. For this reason, a numerical model design algorithm guaranteeing satisfactory disturbance rejection performance even in the case of time-varying turbulence's characteristic is derived. Numerical experiments using the Software Package CAOS have been conducted to demonstrate the robustness of every proposed approach. Given the author firm belief that the future of Adaptive Optics also relies on the development of more sophisticated (i.e., nonlinear) models, a substantial amount of work was dedicated to the study of two classes of widespread pattern recognition methods. Namely Support Vector Machines and Kernel Methods, whose regression capabilities are exploited in the solution of the nonlinear optimal tracking problem. Concerning Support Vector Machines, thanks to the singular optimal control theory, constraints are loosened permitting an easier and faster numerical resolution of the optimization problem. So that, in the fully deterministic case the Support Vector controller results simpler to synthesize. With reference to Kernel Methods, an original attempt to bring together their regression strengths with the concept of Adaptive Inverse Control is presented. The Kernel Recursive Least-Square algorithm is used to implement an adaptive inverse controller capable of forcing a suitable nonlinear dynamics to follow a desired output. This very method can also be used to check if a given arbitrary trajectory is an admissible output for the nonlinear system under study. Such an innovative algorithm could be fruitfully applied, in future works, to the control of Tip-Tilt mirrors. Eventually, a first sketch of the theoretical framework supporting the use of Adaptive Inverse Control for the solution of the general tracking problem is given. After introducing the mathematical formulation of the tracking problem and the needed mathematical definitions, sufficient and necessary conditions (linear case) and sufficient (nonlinear case) conditions to the existence of the solution are derived.
|
97 |
Dictionary learning for pattern classification in medical imaging / Apprentissage de dictionnaires pour la reconnaissance de motifs en imagerie médicaleDeshpande, Hrishikesh 08 July 2016 (has links)
La plupart des signaux naturels peuvent être représentés par une combinaison linéaire de quelques atomes dans un dictionnaire. Ces représentations parcimonieuses et les méthodes d'apprentissage de dictionnaires (AD) ont suscité un vif intérêt au cours des dernières années. Bien que les méthodes d'AD classiques soient efficaces dans des applications telles que le débruitage d'images, plusieurs méthodes d'AD discriminatifs ont été proposées pour obtenir des dictionnaires mieux adaptés à la classification. Dans ce travail, nous avons montré que la taille des dictionnaires de chaque classe est un facteur crucial dans les applications de reconnaissance des formes lorsqu'il existe des différences de variabilité entre les classes, à la fois dans le cas des dictionnaires classiques et des dictionnaires discriminatifs. Nous avons validé la proposition d'utiliser différentes tailles de dictionnaires, dans une application de vision par ordinateur, la détection des lèvres dans des images de visages, ainsi que par une application médicale plus complexe, la classification des lésions de scléroses en plaques (SEP) dans des images IRM multimodales. Les dictionnaires spécifiques à chaque classe sont appris pour les lésions et les tissus cérébraux sains. La taille du dictionnaire pour chaque classe est adaptée en fonction de la complexité des données. L'algorithme est validé à l'aide de 52 séquences IRM multimodales de 13 patients atteints de SEP. / Most natural signals can be approximated by a linear combination of a few atoms in a dictionary. Such sparse representations of signals and dictionary learning (DL) methods have received a special attention over the past few years. While standard DL approaches are effective in applications such as image denoising or compression, several discriminative DL methods have been proposed to achieve better image classification. In this thesis, we have shown that the dictionary size for each class is an important factor in the pattern recognition applications where there exist variability difference between classes, in the case of both the standard and discriminative DL methods. We validated the proposition of using different dictionary size based on complexity of the class data in a computer vision application such as lips detection in face images, followed by more complex medical imaging application such as classification of multiple sclerosis (MS) lesions using MR images. The class specific dictionaries are learned for the lesions and individual healthy brain tissues, and the size of the dictionary for each class is adapted according to the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients.
|
98 |
Fouille de données pour l'extraction de profils d'usage et la prévision dans le domaine de l'énergie / Data mining for the extraction of usage profiles and forecasting in the energy fieldMelzi, Fateh 17 October 2018 (has links)
De nos jours, les pays sont amenés à prendre des mesures visant à une meilleure rationalisation des ressources en électricité dans une optique de développement durable. Des solutions de comptage communicantes (Smart Meters), sont mises en place et autorisent désormais une lecture fine des consommations. Les données spatio-temporelles massives collectées peuvent ainsi aider à mieux connaitre les habitudes de consommation et pouvoir les prévoir de façon précise. Le but est d'être en mesure d'assurer un usage « intelligent » des ressources pour une meilleure consommation : en réduisant par exemple les pointes de consommations ou en ayant recours à des sources d'énergies renouvelables. Les travaux de thèse se situent dans ce contexte et ont pour ambition de développer des outils de fouille de données en vue de mieux comprendre les habitudes de consommation électrique et de prévoir la production d'énergie solaire, permettant ensuite une gestion intelligente de l'énergie.Le premier volet de la thèse s'intéresse à la classification des comportements types de consommation électrique à l'échelle d'un bâtiment puis d'un territoire. Dans le premier cas, une identification des profils types de consommation électrique journalière a été menée en se basant sur l'algorithme des K-moyennes fonctionnel et sur un modèle de mélange gaussien. A l'échelle d'un territoire et en se plaçant dans un contexte non supervisé, le but est d'identifier des profils de consommation électrique types des usagers résidentiels et de relier ces profils à des variables contextuelles et des métadonnées collectées sur les usagers. Une extension du modèle de mélange gaussien classique a été proposée. Celle-ci permet la prise en compte de variables exogènes telles que le type de jour (samedi, dimanche et jour travaillé,…) dans la classification, conduisant ainsi à un modèle parcimonieux. Le modèle proposé a été comparé à des modèles classiques et appliqué sur une base de données irlandaise incluant à la fois des données de consommations électriques et des enquêtes menées auprès des usagers. Une analyse des résultats sur une période mensuelle a permis d'extraire un ensemble réduit de groupes d'usagers homogènes au sens de leurs habitudes de consommation électrique. Nous nous sommes également attachés à quantifier la régularité des usagers en termes de consommation ainsi que l'évolution temporelle de leurs habitudes de consommation au cours de l'année. Ces deux aspects sont en effet nécessaires à l'évaluation du potentiel de changement de comportement de consommation que requiert une politique d'effacement (décalage des pics de consommations par exemple) mise en place par les fournisseurs d'électricité.Le deuxième volet de la thèse porte sur la prévision de l'irradiance solaire sur deux horizons temporels : à court et moyen termes. Pour ce faire, plusieurs méthodes ont été utilisées parmi lesquelles des méthodes statistiques classiques et des méthodes d'apprentissage automatique. En vue de tirer profit des différents modèles, une approche hybride combinant les différents modèles a été proposée. Une évaluation exhaustive des différents approches a été menée sur une large base de données incluant des paramètres météorologiques mesurés et des prévisions issues des modèles NWP (Numerical Weather Predictions). La grande diversité des jeux de données relatifs à quatre localisations aux climats bien distincts (Carpentras, Brasilia, Pampelune et Ile de la Réunion) a permis de démontrer la pertinence du modèle hybride proposé et ce, pour l'ensemble des localisations / Nowadays, countries are called upon to take measures aimed at a better rationalization of electricity resources with a view to sustainable development. Smart Metering solutions have been implemented and now allow a fine reading of consumption. The massive spatio-temporal data collected can thus help to better understand consumption behaviors, be able to forecast them and manage them precisely. The aim is to be able to ensure "intelligent" use of resources to consume less and consume better, for example by reducing consumption peaks or by using renewable energy sources. The thesis work takes place in this context and aims to develop data mining tools in order to better understand electricity consumption behaviors and to predict solar energy production, then enabling intelligent energy management.The first part of the thesis focuses on the classification of typical electrical consumption behaviors at the scale of a building and then a territory. In the first case, an identification of typical daily power consumption profiles was conducted based on the functional K-means algorithm and a Gaussian mixture model. On a territorial scale and in an unsupervised context, the aim is to identify typical electricity consumption profiles of residential users and to link these profiles to contextual variables and metadata collected on users. An extension of the classical Gaussian mixture model has been proposed. This allows exogenous variables such as the type of day (Saturday, Sunday and working day,...) to be taken into account in the classification, thus leading to a parsimonious model. The proposed model was compared with classical models and applied to an Irish database including both electricity consumption data and user surveys. An analysis of the results over a monthly period made it possible to extract a reduced set of homogeneous user groups in terms of their electricity consumption behaviors. We have also endeavoured to quantify the regularity of users in terms of consumption as well as the temporal evolution of their consumption behaviors during the year. These two aspects are indeed necessary to evaluate the potential for changing consumption behavior that requires a demand response policy (shift in peak consumption, for example) set up by electricity suppliers.The second part of the thesis concerns the forecast of solar irradiance over two time horizons: short and medium term. To do this, several approaches have been developed, including autoregressive statistical approaches for modelling time series and machine learning approaches based on neural networks, random forests and support vector machines. In order to take advantage of the different models, a hybrid model combining the different models was proposed. An exhaustive evaluation of the different approaches was conducted on a large database including four locations (Carpentras, Brasilia, Pamplona and Reunion Island), each characterized by a specific climate as well as weather parameters: measured and predicted using NWP models (Numerical Weather Predictions). The results obtained showed that the hybrid model improves the results of photovoltaic production forecasts for all locations
|
99 |
Fouille de données à partir de séries temporelles d’images satellites / Data mining from satellite image time seriesKhiali, Lynda 28 November 2018 (has links)
Les images satellites représentent de nos jours une source d’information incontournable. Elles sont exploitées dans diverses applications, telles que : la gestion des risques, l’aménagent des territoires, la cartographie du sol ainsi qu’une multitude d’autre taches. Nous exploitons dans cette thèse les Séries Temporelles d’Images Satellites (STIS) pour le suivi des évolutions des habitats naturels et semi-naturels. L’objectif est d’identifier, organiser et mettre en évidence des patrons d’évolution caractéristiques de ces zones.Nous proposons des méthodes d’analyse de STIS orientée objets, en opposition aux approches par pixel, qui exploitent des images satellites segmentées. Nous identifions d’abord les profils d’évolution des objets de la série. Ensuite, nous analysons ces profils en utilisant des méthodes d’apprentissage automatique. Afin d’identifier les profils d’évolution, nous explorons les objets de la série pour déterminer un sous-ensemble d’objets d’intérêt (entités spatio-temporelles/objets de référence). L’évolution de ces entités spatio-temporelles est ensuite illustrée en utilisant des graphes d’évolution.Afin d’analyser les graphes d’évolution, nous avons proposé trois contributions. La première contribution explore des STIS annuelles. Elle permet d’analyser les graphes d’évolution en utilisant des algorithmes de clustering, afin de regrouper les entités spatio-temporelles évoluant similairement. Dans la deuxième contribution, nous proposons une méthode d’analyse pluri-annuelle et multi-site. Nous explorons plusieurs sites d’étude qui sont décrits par des STIS pluri-annuelles. Nous utilisons des algorithmes de clustering afin d’identifier des similarités intra et inter-site. Dans la troisième contribution, nous introduisons une méthode d’analyse semi-supervisée basée sur du clustering par contraintes. Nous proposons une méthode de sélection de contraintes. Ces contraintes sont utilisées pour guider le processus de clustering et adapter le partitionnement aux besoins de l’utilisateur.Nous avons évalué nos travaux sur différents sites d’étude. Les résultats obtenus ont permis d’identifier des profils d’évolution types sur chaque site d’étude. En outre, nous avons aussi identifié des évolutions caractéristiques communes à plusieurs sites. Par ailleurs, la sélection de contraintes pour l’apprentissage semi-supervisé a permis d’identifier des entités profitables à l’algorithme de clustering. Ainsi, les partitionnements obtenus en utilisant l’apprentissage non supervisé ont été améliorés et adaptés aux besoins de l’utilisateur. / Nowadays, remotely sensed images constitute a rich source of information that can be leveraged to support several applications including risk prevention, land use planning, land cover classification and many other several tasks. In this thesis, Satellite Image Time Series (SITS) are analysed to depict the dynamic of natural and semi-natural habitats. The objective is to identify, organize and highlight the evolution patterns of these areas.We introduce an object-oriented method to analyse SITS that consider segmented satellites images. Firstly, we identify the evolution profiles of the objects in the time series. Then, we analyse these profiles using machine learning methods. To identify the evolution profiles, we explore all the objects to select a subset of objects (spatio-temporal entities/reference objects) to be tracked. The evolution of the selected spatio-temporal entities is described using evolution graphs.To analyse these evolution graphs, we introduced three contributions. The first contribution explores annual SITS. It analyses the evolution graphs using clustering algorithms, to identify similar evolutions among the spatio-temporal entities. In the second contribution, we perform a multi-annual cross-site analysis. We consider several study areas described by multi-annual SITS. We use the clustering algorithms to identify intra and inter-site similarities. In the third contribution, we introduce à semi-supervised method based on constrained clustering. We propose a method to select the constraints that will be used to guide the clustering and adapt the results to the user needs.Our contributions were evaluated on several study areas. The experimental results allow to pinpoint relevant landscape evolutions in each study sites. We also identify the common evolutions among the different sites. In addition, the constraint selection method proposed in the constrained clustering allows to identify relevant entities. Thus, the results obtained using the unsupervised learning were improved and adapted to meet the user needs.
|
100 |
Fouille de sous-graphes fréquents à base d'arc consistance / Frequent subgraph mining with arc consistencyDouar, Brahim 27 November 2012 (has links)
Avec la croissance importante du besoin d'analyser une grande masse de données structurées tels que les composés chimiques, les structures de protéines ou même les réseaux sociaux, la fouille de sous-graphes fréquents est devenue un défi réel en matière de fouille de données. Ceci est étroitement lié à leur nombre exponentiel ainsi qu'à la NP-complétude du problème d'isomorphisme d'un sous-graphe général. Face à cette complexité, et pour gérer cette taille importante de l'espace de recherche, les méthodes classiques de fouille de graphes ont exploré des heuristiques de recherche basées sur le support, le langage de description des exemples (limitation aux chemins, aux arbres, etc.) ou des hypothèses (recherche de sous-arborescence communes, de chemins communs, etc.). Dans le cadre de cette thèse, nous nous basons sur une méthode d'appariement de graphes issue du domaine de la programmation par contraintes, nommée AC-projection, qui a le mérite d'avoir une complexité polynomiale. Nous introduisons des approches de fouille de graphes permettant d'améliorer les approches existantes pour ce problème. En particulier, nous proposons deux algorithmes, FGMAC et AC-miner, permettant de rechercher les sous-graphes fréquents à partir d'une base de graphes. Ces deux algorithmes profitent, différemment, des propriétés fortes intéressantes de l'AC-projection. En effet, l'algorithme FGMAC adopte un parcours en largeur de l'espace de recherche et exploite l'approche par niveau introduite dans Apriori, tandis que l'algorithme AC-miner parcourt l'espace en profondeur par augmentation de motifs, assurant ainsi une meilleure mise à l'échelle pour les grands graphes. Ces deux approches permettent l'extraction d'un type particulier de graphes, il s'agit de celui des sous-graphes AC-réduits fréquents. Dans un premier temps, nous prouvons, théoriquement, que l'espace de recherche de ces sous-graphes est moins important que celui des sous-graphes fréquents à un isomorphisme près. Ensuite, nous menons une série d'expérimentations permettant de prouver que les algorithmes FGMAC et AC-miner sont plus efficients que ceux de l'état de l'art. Au même temps, nous prouvons que les sous-graphes AC-réduits fréquents, en dépit de leur nombre sensiblement réduit, ont le même pouvoir discriminant que les sous-graphes fréquents à un isomorphisme près. Cette étude est menée en se basant sur une évaluation expérimentale de la qualité des sous-graphes AC-réduits fréquents dans un processus de classification supervisée de graphes. / With the important growth of requirements to analyze large amount of structured data such as chemical compounds, proteins structures, social networks, to cite but a few, graph mining has become an attractive track and a real challenge in the data mining field. Because of the NP-Completeness of subgraph isomorphism test as well as the huge search space, frequent subgraph miners are exponential in runtime and/or memory use. In order to alleviate the complexity issue, existing subgraph miners have explored techniques based on the minimal support threshold, the description language of the examples (only supporting paths, trees, etc.) or hypothesis (search for shared trees or common paths, etc.). In this thesis, we are using a new projection operator, named AC-projection, which exhibits nice complexity properties as opposed to the graph isomorphism operator. This operator comes from the constraints programming field and has the advantage of a polynomial complexity. We propose two frequent subgraph mining algorithms based on the latter operator. The first one, named FGMAC, follows a breadth-first order to find frequent subgraphs and takes advantage of the well-known Apriori levelwise strategy. The second is a pattern-growth approach that follows a depth-first search space exploration strategy and uses powerful pruning techniques in order to considerably reduce this search space. These two approaches extract a set of particular subgraphs named AC-reduced frequent subgraphs. As a first step, we have studied the search space for discovering such frequent subgraphs and proved that this one is smaller than the search space of frequent isomorphic subgraphs. Then, we carried out experiments in order to prove that FGMAC and AC-miner are more efficient than the state-of-the-art algorithms. In the same time, we have studied the relevance of frequent AC-reduced subgraphs, which are much fewer than isomorphic ones, on classification and we conclude that we can achieve an important performance gain without or with non-significant loss of discovered pattern's quality.
|
Page generated in 0.1425 seconds