Spelling suggestions: "subject:"aprendizaje supervisado"" "subject:"aprendizaje autosupervisado""
1 |
Contributions to statistical learning for magnetic resonance imagesVentura Campos, Noelia 13 March 2013 (has links)
Introducción
Este trabajo describe las contribuciones al aprendizaje estadístico desarrollado e implementado en imágenes de Resonancia Magnética (RM). Concretamente, se describe la contribución a los análisis de componentes independientes (ICA), perteneciente al aprendizaje no supervisado, en la mejora de la metodología existente. Ésta mejora metodológica es desarrollada y aplicada para las distintas técnicas de adquisición de imagen:
1. Imagen cerebral adquirida mediante RM estructural en el estudio de la forma de la estructura del hipocampo para la enfermedad de Alzheimer, donde estudios previos longitudinales la asocian con el deterioro debido de la enfermedad.
2. Imagen cerebral adquirida mediante RM funcional para el estudio de la plasticidad cerebral asociada a procesos de aprendizaje.
Metodología
En el estudio de la forma del hipocampo se introduce la técnica de análisis de datos funcionales (FDA) para formas bidimensionales (2D) y tridimensionales (3D). En ambos estudios se propone una función discriminante lineal basada en ICA para la mejora en la clasificación de los datos. Por otro lado, en el estudio de la plasticidad cerebral se aporta un análisis donde las imágenes de RMf adquiridas en estado de reposo son guiadas por las imágenes de RMf basada en tarea, con el objetivo de encontrar un cambio de la conectividad funcional dado por el proceso de entrenamiento en una tarea nueva.
Conclusiones
La aproximación mediante FDA para el análisis de imagen, muestra una superioridad con respecto a otras aproximaciones utilizadas. Además, la función discriminante basada en ICA propuesta en este trabajo proporciona mejores resultados en discriminación que usando la metodología descrita en la literatura previa. Con respecto al estudio de las imágenes de RMf, se muestra que la RMf en estado de reposo guiado por RMf basado en tarea abre un nuevo camino para el estudio de cómo el aprendizaje genera plasticidad cerebral.
|
2 |
Unsupervised Identification of the User’s Query Intent in Web SearchCalderón-Benavides, Liliana 27 September 2011 (has links)
This doctoral work focuses on identifying and understanding the intents that motivate a user to perform a search on the Web. To this end, we apply machine learning models that do not require more information than the one provided by the very needs of the users, which in this work are represented by their queries. The knowledge and interpretation of this invaluable information can help search engines to obtain resources especially relevant to users, and thus improve their satisfaction.
By means of unsupervised learning techniques, which have been selected according to the context of the problem being solved, we show that is not only possible to identify the user’s intents, but that this process can be conducted automatically.
The research conducted in this thesis has involved an evolutionary process that starts from the manual analysis of different sets of real user queries from a search engine. The work passes through the proposition of a new classification of user’s query intents; the application of different unsupervised learning techniques to identify those intents; up to determine that the user’s intents, rather than being considered as an uni–dimensional problem, should be conceived as a composition of several aspects, or dimensions (i.e., as a multi–dimensional problem), that contribute to clarify and to establish what the user’s intents are. Furthermore, from this last proposal, we have configured a framework for the on–line identification of the user’s query intent. Overall, the results from this research have shown to be effective for the problem of identifying user’s query intent. / Este trabajo doctoral se enfoca en identificar y entender las intenciones que motivan a los usuarios a realizar búsquedas en la Web a través de la aplicación de métodos de aprendizaje automático que no requieren datos adicionales más que las necesidades de información de los mismos usuarios, representadas a través de sus consultas. El conocimiento y la interpretación de esta información, de valor incalculable, puede ayudar a los sistemas de búsqueda Web a encontrar recursos particularmente relevantes y así mejorar la satisfacción de sus usuarios.
A través del uso de técnicas de aprendizaje no supervisado, las cuales han sido seleccionadas dependiendo del contexto del problema a solucionar, y cuyos resultados han demostrado ser efectivos para cada uno de los problemas planteados, a lo largo de este trabajo se muestra que no solo es posible identificar las intenciones de los usuarios, sino que este es un proceso que se puede llevar a cabo de manera automática.
La investigación desarrollada en esta tesis ha implicado un proceso evolutivo, el cual inicia con el análisis de la clasificación manual de diferentes conjuntos de consultas que usuarios reales han sometido a un motor de búsqueda. El trabajo pasa a través de la proposición de una nueva clasificación de las intenciones de consulta de usuarios, y el uso de diferentes técnicas de aprendizaje no supervisado para identificar dichas intenciones, llegando hasta establecer que éste no es un problema unidimensional, sino que debería ser considerado como un problema de múltiples dimensiones, donde cada una de dichas dimensiones, o facetas, contribuye a clarificar y establecer cuál es la intención del usuario. A partir de este último trabajo, hemos creado un modelo para la identificar la intención del usuario en un escenario on–line.
|
3 |
Consensus and analia: new challenges in detection and management of security vulnerabilities in data networksCorral Torruella, Guiomar 10 September 2009 (has links)
A mesura que les xarxes passen a ser un element integral de les corporacions, les tecnologies de seguretat de xarxa es desenvolupen per protegir dades i preservar la privacitat. El test de seguretat en una xarxa permet identificar vulnerabilitats i assegurar els requisits de seguretat de qualsevol empresa. L'anàlisi de la seguretat permet reconèixer informació maliciosa, tràfic no autoritzat, vulnerabilitats de dispositius o de la xarxa, patrons d'intrusió, i extreure conclusions de la informació recopilada en el test. Llavors, on està el problema? No existeix un estàndard de codi obert ni un marc integral que segueixi una metodologia de codi obert per a tests de seguretat, la informació recopilada després d'un test inclou moltes dades, no existeix un patró exacte i objectiu sobre el comportament dels dispositius de xarxa ni sobre les xarxes i, finalment, el nombre de vulnerabilitats potencials és molt extens. El desafiament d'aquest domini resideix a tenir un gran volum de dades complexes, on poden aparèixer diagnòstics inconsistents. A més, és un domini no supervisat on no s'han aplicat tècniques d'aprenentatge automàtic anteriorment. Per això cal una completa caracterització del domini. Consensus és l'aportació principal d'aquesta tesi: un marc integrat que inclou un sistema automatitzat per millorar la realització de tests en una xarxa i l'anàlisi de la informació recollida. El sistema automatitza els mecanismes associats a un test de seguretat i minimitza la durada de l'esmentat test, seguint la metodologia OSSTMM. Pot ser usat en xarxes cablejades i sense fils. La seguretat es pot avaluar des d'una perspectiva interna, o bé externa a la pròpia xarxa. Es recopilen dades d'ordinadors, routers, firewalls i detectors d'intrusions. Consensus gestionarà les dades a processar per analistes de seguretat. Informació general i específica sobre els seus serveis, sistema operatiu, la detecció de vulnerabilitats, regles d'encaminament i de filtrat, la resposta dels detectors d'intrusions, la debilitat de les contrasenyes, i la resposta a codi maliciós o a atacs de denegació de servei són un exemple de les dades a emmagatzemar per cada dispositiu. Aquestes dades són recopilades per les eines de test incloses a Consensus.La gran quantitat de dades per cada dispositiu i el diferent número i tipus d'atributs que els caracteritzen, compliquen l'extracció manual d'un patró de comportament. Les eines de test automatitzades poden obtenir diferents resultats sobre el mateix dispositiu i la informació recopilada pot arribar a ser incompleta o inconsistent. En aquest entorn sorgeix la segona principal aportació d'aquesta tesi: Analia, el mòdul d'anàlisi de Consensus. Mentre que Consensus s'encarrega de recopilar dades sobre la seguretat dels dispositius, Analia inclou tècniques d'Intel·ligència Artificial per ajudar als analistes després d'un test de seguretat. Diferents mètodes d 'aprenentatge no supervisat s'han analitzat per ser adaptats a aquest domini. Analia troba semblances dins dels dispositius analitzats i l'agrupació dels esmentats dispositius ajuda als analistes en l'extracció de conclusions. Les millors agrupacions són seleccionades mitjançant l'aplicació d'índexs de validació. A continuació, el sistema genera explicacions sobre cada agrupació per donar una resposta més detallada als analistes de seguretat.La combinació de tècniques d'aprenentatge automàtic en el domini de la seguretat de xarxes proporciona beneficis i millores en la realització de tests de seguretat mitjançant la utilització del marc integrat Consensus i el seu sistema d'anàlisi de resultats Analia. / A medida que las redes pasan a ser un elemento integral de las corporaciones, las tecnologías de seguridad de red se desarrollan para proteger datos y preservar la privacidad. El test de seguridad en una red permite identificar vulnerabilidades y asegurar los requisitos de seguridad de cualquier empresa. El análisis de la seguridad permite reconocer información maliciosa, tráfico no autorizado, vulnerabilidades de dispositivos o de la red, patrones de intrusión, y extraer conclusiones de la información recopilada en el test. Entonces, ¿dónde está el problema? No existe un estándar de código abierto ni un marco integral que siga una metodología de código abierto para tests de seguridad, la información recopilada después de un test incluye muchos datos, no existe un patrón exacto y objetivo sobre el comportamiento de los dispositivos de red ni sobre las redes y, finalmente, el número de vulnerabilidades potenciales es muy extenso. El desafío de este dominio reside en tener un gran volumen de datos complejos, donde pueden aparecer diagnósticos inconsistentes. Además, es un dominio no supervisado donde no se han aplicado técnicas de aprendizaje automático anteriormente. Por ello es necesaria una completa caracterización del dominio.Consensus es la aportación principal de esta tesis: un marco integrado que incluye un sistema automatizado para mejorar la realización de tests en una red y el análisis de la información recogida. El sistema automatiza los mecanismos asociados a un test de seguridad y minimiza la duración de dicho test, siguiendo la metodología OSSTMM. Puede ser usado en redes cableadas e inalámbricas. La seguridad se puede evaluar desde una perspectiva interna, o bien externa a la propia red. Se recopilan datos de ordenadores, routers, firewalls y detectores de intrusiones. Consensus gestionará los datos a procesar por analistas de seguridad. Información general y específica sobre sus servicios, sistema operativo, la detección de vulnerabilidades, reglas de encaminamiento y de filtrado, la respuesta de los detectores de intrusiones, la debilidad de las contraseñas, y la respuesta a código malicioso o a ataques de denegación de servicio son un ejemplo de los datos a almacenar por cada dispositivo. Estos datos son recopilados por las herramientas de test incluidas en Consensus. La gran cantidad de datos por cada dispositivo y el diferente número y tipo de atributos que les caracterizan, complican la extracción manual de un patrón de comportamiento. Las herramientas de test automatizadas pueden obtener diferentes resultados sobre el mismo dispositivo y la información recopilada puede llegar a ser incompleta o inconsistente. En este entorno surge la segunda principal aportación de esta tesis: Analia, el módulo de análisis de Consensus. Mientras que Consensus se encarga de recopilar datos sobre la seguridad de los dispositivos, Analia incluye técnicas de Inteligencia Artificial para ayudar a los analistas después de un test de seguridad. Distintos métodos de aprendizaje no supervisado se han analizado para ser adaptados a este dominio. Analia encuentra semejanzas dentro de los dispositivos analizados y la agrupación de dichos dispositivos ayuda a los analistas en la extracción de conclusiones. Las mejores agrupaciones son seleccionadas mediante la aplicación de índices de validación. A continuación, el sistema genera explicaciones sobre cada agrupación para dar una respuesta más detallada a los analistas de seguridad.La combinación de técnicas de aprendizaje automático en el dominio de la seguridad de redes proporciona beneficios y mejoras en la realización de tests de seguridad mediante la utilización del marco integrado Consensus y su sistema de análisis de resultados Analia. / As networks become an integral part of corporations and everyone's lives, advanced network security technologies are being developed to protect data and preserve privacy. Network security testing is necessary to identify and report vulnerabilities, and also to assure enterprise security requirements. Security analysis is necessary to recognize malicious data, unauthorized traffic, detected vulnerabilities, intrusion data patterns, and also to extract conclusions from the information gathered in the security test. Then, where is the problem? There is no open-source standard for security testing, there is no integral framework that follows an open-source methodology for security testing, information gathered after a security test includes large data sets, there is not an exact and objective pattern of behavior among network devices or, furthermore, among data networks and, finally, there are too many potentially vulnerabilities. The challenge of this domain resides in having a great volume of data; data are complex and can appear inconsistent diagnostics. It is also an unsupervised domain where no machine learning techniques have been applied before. Thus a complete characterization of the domain is needed.Consensus is the main contribution of this thesis. Consensus is an integrated framework that includes a computer-aided system developed to help security experts during network testing and analysis. The system automates mechanisms related to a security assessment in order to minimize the time needed to perform an OSSTMM security test. This framework can be used in wired and wireless networks. Network security can be evaluated from inside or from outside the system. It gathers data of different network devices, not only computers but also routers, firewalls and Intrusion Detection Systems (IDS). Consensus manages many data to be processed by security analysts after an exhaustive test. General information, port scanning data, operating system fingerprinting, vulnerability scanning data, routing and filtering rules, IDS response, answer to malicious code, weak passwords reporting, and response to denial of service attacks can be stored for each tested device. This data is gathered by the automated testing tools that have been included in Consensus.The great amount of data for every device and the different number and type of attributes complicates a manually traffic pattern finding. The automated testing tools can obtain different results, incomplete or inconsistent information. Then data obtained from a security test can be uncertain, approximate, complex and partial true. In this environment arises the second main contribution of this thesis: Analia, the data analysis module of Consensus. Whereas Consensus gathers security data, Analia includes Artificial Intelligence to help analysts after a vulnerability assessment. Unsupervised learning has been analyzed to be adapted to this domain. Analia finds resemblances within tested devices and clustering aids analysts in the extraction of conclusions. Afterwards, the best results are selected by applying cluster validity indices. Then explanations of clustering results are included to give a more comprehensive response to security analysts.The combination of machine learning techniques in the network security domain provides benefits and improvements when performing security assessments with the Consensus framework and processing its results with Analia.
|
Page generated in 0.0567 seconds