• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 16
  • 13
  • 1
  • 1
  • Tagged with
  • 73
  • 21
  • 20
  • 14
  • 13
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etude de l'énergétique de l'assemblage des protéines membranaires / Energetics of the assembly of membrane proteins

Sidore, Marlon 10 December 2018 (has links)
Les protéines membranaires occupent en moyenne 50% de la masse des membranes cellulaires. Cependant, certaines membranes spécialisées peuvent avoir de 20 à 90% de leur masse en protéines. Dans ce cadre, l'importance de l'assemblage des protéines membranaires dans des complexes cohérents, dynamiques et fonctionnels n'est plus à démontrer.Mon projet s'inscrit dans la compréhension des forces qui mènent à l'assemblage des protéines membranaires. J'utilise pour cela le modèle de l'Aquaporine Z (AqpZ) d'Escherichia coli. En premier lieu, j'ai mis en oeuvre une approche de dynamique moléculaire gros grains avec des forces de biais adaptatifs pour étudier les relations entre orientations de deux monomères d'AqpZ. Il existe, de façon surprenante, des forces se propageant à longue distance vraisemblablement par les lipides qui biaisent les orientations relatives entre les protéines.Un deuxième axe de mon travail est l'étude des enrichissements lipidiques autour de l'AqpZ native ou mutée, à différentes distances, avec l'utilisation d'une membrane complexe rendant compte de la diversité lipidique de la membrane interne d'E.coli. Dans cette analyse, la cardiolipine est enrichie à proximité de la protéine. Enfin, j'ai construit un système contenant 125 monomères d'AqpZ dans une membranes simple ou complexe, qui représentent 50% en masse en protéines. Ce système m'a permis de questionner l'évolution spontanée d'un tel système encombré, mais aussi le devenir des forces à longue distance et des lipides enrichis à la surface de la protéine dans ce contexte. / Membrane proteins represent on average 50% of the mass of cellular membranes. However, specialized membranes can have from 20 to 90% of their mass in proteins. In this context, the importance of the assembly of membrane proteins in coherent, dynamic and functional complexes isn't to be proven anymore. The goal of my project is to understand the different forces that lead to the assembly of membrane proteins. For this aim, I am using the Aquaporin Z (AqpZ) model protein from Escherichia coli, which is studied in our laboratory. First, I use a coarsed grain molecular dynamics approach with adaptive biasing forces to study the relations between orientations of two AqpZ monomers. Surprisingly, there are forces propagating at long distance, presumably by the lipids which in turn bias the relative orientations between the proteins. The second axis of my work is the study of lipid enrichments around native or mutated AqpZ, at different distances, with the use of a complex membrane accounting for the lipid diversity of the inner membrane of E.coli. In this analysis, cardiolipin is enriched near the protein. Finally, I built a system containing 125 AqpZ monomers in a simple or complex membrane, which represents 50% protein by weight. This system allowed me to examine the spontaneous evolution of such a crowded system, but also to investigate the fate of the long distance forces and the lipid enrichments at the protein surface in this context.
22

Etude du mécanisme d'action du propranolol dans les hémangiomes infantiles / Study of the mechnism of action of propranolol in infantile hemangiomas

Kaulanjan-Checkmodine, Priscilla 28 November 2018 (has links)
Touchant près de 3 à 10 % des nouveau-nés, les hémangiomes infantiles (HI) sont des tumeurs vasculaires bénignes, les plus fréquentes chez les nourrissons. Les HI sévères sont actuellement traités par un bêtabloqueur, le propranolol, dont l’efficacité a été découverte de manière fortuite. Ainsi, son mécanisme d’action est méconnu. Le propranolol se fixe sur les récepteurs beta-adrénergiques et empêche leur activation par les catécholamines comme la noradrénaline. Nous nous sommes donc interrogés sur la relation entre le propranolol et la noradrénaline dans cette tumeur. Nous avons montré une forte expression de la noradrénaline et des enzymes de synthèse des catécholamines dans les HI, comparés aux hémangiomes congénitaux, qui diminuent lorsque la tumeur involue ou est traitée par le propranolol. Nous avons ensuite réalisé un modèle in vitro ressemblant à l’HI à partir de cellules isolées d’HI capables de synthétiser les catécholamines : les cellules endothéliales et les péricytes. Ce modèle nous permettra d’étudier l’impact de la noradrénaline et du propranolol sur ces cellules. Parallèlement, notre équipe a réalisé un modèle in vivo qui a permis de mettre en évidence le rôle clé de la protéine quaporine-1 (AQP1) dans la réponse antitumorale du propranolol. Nous avons également étudié l’expression de l’AQP1 dans les HI et les hémangiomes congénitaux et découvert un type cellulaire adventitiel exprimant l’AQP1 dans les HI, le télocyte. Au total, notre travail sur l’HI a mis en évidence d’une part une possibilité de production endogène accrue de noradrénaline, probablement antagonisée avec succès par le propranolol, et la découverte de télocytes AQP1+ qui pourraient avoir un rôle dans la spécificité de la réponse des HI au propranolol. / Affecting nearly 3 to 10 % of newborns, infantile hemangiomas (HI) are the most common benign vascular tumors in infants. Severe HIs are currently treated with a beta-blocker, propranolol, whose efficacy was discovered by serendipidity. Propranolol binds to beta-adrenergic receptors and prevents their activation by catecholamines such as noradrenaline. We therefore wondered about the relationship between propranolol and noradrenaline in this tumor. We showed a strong expression of noradrenaline and catecholamine synthesis enzymes in HI, compared to congenital hemangiomas, which decrease when the tumor involutes or is treated with propranolol. We then realize an in vitro model resembling HI from cells isolated from HI capable of synthesizing catecholamines: endothelial cells and pericytes. This model will permit to study the impact of noradrenaline and propranolol on these cells. At the same time, our team created an in vivo model that highlighted the key role of aquaporin-1 protein (AQP1) in the antitumor response to propranolol. We have also studied the expression of AQP1 in HI and congenital hemangiomas, and discovered an adventitious cell type expressing AQP1 in HI, the telocyte. Altogether, our work on HI has revealed firstly the possibility of increased endogenous production of norepinephrine, probably successfully antagonized by propranolol, and secondly the presence of AQP1 + cells which could have a central role central in the specificity of HI response to propranolol.
23

Water transport through perinatal skin : Barrier function and aquaporin water channels

Ågren, Johan January 2003 (has links)
<p>While constituting a well functioning interface with the aqueous environment in utero, the skin offers a poor barrier after very preterm birth. As a result, transepidermal water loss (TEWL) is high, a fact which has important clinical consequences in these infants. To investigate the transport of water through perinatal skin and the potential role of aquaporin (AQP), a water channel protein, in this process, we determined TEWL in a group of extremely preterm infants, and in an experimental rat model we analyzed the expression and distribution of AQP in perinatal skin in relation to TEWL, skin surface hydration and water content. The effects of antenatal corticosteroids (ANS) and of restricted intake of fluids and nutrients on barrier characteristics of the perinatal skin and its AQP expression were also studied.</p><p>In infants born at 24 and 25 weeks of gestation TEWL was very high in the first days after birth and decreased with increasing postnatal age. At a postnatal age of 4 weeks, TEWL was still twice as high as previously reported in infants born at a gestational age of 25-27 weeks and four times higher than in infants born at term. In the rat model, immunohistochemical analysis revealed that AQP1 and AQP3 are abundantly expressed in the skin. AQP1 was expressed exclusively in dermal capillaries and AQP3 in basal layers of the epidermis. AQP1 and AQP3 mRNA as assessed by semiquantitative RT-PCR was higher in fetal than in adult skin. As in infants, TEWL and skin surface hydration were inversely related to gestational age in the rat. In preterm rat pups exposed to ANS, TEWL and skin surface hydration were lower than in unexposed controls, and AQP3 expression was selectively induced by ANS. In term newborn rat pups, restriction of fluid and nutrient intake resulted in a higher skin water content and higher TEWL early after birth, while at an age of 7 days TEWL was lower in fasting rat pups than in controls, although skin water content was still higher.</p><p>To conclude, TEWL is very high in extremely preterm infants early after birth and then decreases at a slower rate than previously reported for a group of slightly more mature infants. </p><p>This is the first time that the distribution and gene expression of AQP1 and AQP3 have been demonstrated in perinatal skin. The localization and expression of AQP in the skin might indicate that these water channels are involved in the regulation of skin hydration and transepidermal water transport in the fetus and newborn infant.</p>
24

Water transport through perinatal skin : Barrier function and aquaporin water channels

Ågren, Johan January 2003 (has links)
While constituting a well functioning interface with the aqueous environment in utero, the skin offers a poor barrier after very preterm birth. As a result, transepidermal water loss (TEWL) is high, a fact which has important clinical consequences in these infants. To investigate the transport of water through perinatal skin and the potential role of aquaporin (AQP), a water channel protein, in this process, we determined TEWL in a group of extremely preterm infants, and in an experimental rat model we analyzed the expression and distribution of AQP in perinatal skin in relation to TEWL, skin surface hydration and water content. The effects of antenatal corticosteroids (ANS) and of restricted intake of fluids and nutrients on barrier characteristics of the perinatal skin and its AQP expression were also studied. In infants born at 24 and 25 weeks of gestation TEWL was very high in the first days after birth and decreased with increasing postnatal age. At a postnatal age of 4 weeks, TEWL was still twice as high as previously reported in infants born at a gestational age of 25-27 weeks and four times higher than in infants born at term. In the rat model, immunohistochemical analysis revealed that AQP1 and AQP3 are abundantly expressed in the skin. AQP1 was expressed exclusively in dermal capillaries and AQP3 in basal layers of the epidermis. AQP1 and AQP3 mRNA as assessed by semiquantitative RT-PCR was higher in fetal than in adult skin. As in infants, TEWL and skin surface hydration were inversely related to gestational age in the rat. In preterm rat pups exposed to ANS, TEWL and skin surface hydration were lower than in unexposed controls, and AQP3 expression was selectively induced by ANS. In term newborn rat pups, restriction of fluid and nutrient intake resulted in a higher skin water content and higher TEWL early after birth, while at an age of 7 days TEWL was lower in fasting rat pups than in controls, although skin water content was still higher. To conclude, TEWL is very high in extremely preterm infants early after birth and then decreases at a slower rate than previously reported for a group of slightly more mature infants. This is the first time that the distribution and gene expression of AQP1 and AQP3 have been demonstrated in perinatal skin. The localization and expression of AQP in the skin might indicate that these water channels are involved in the regulation of skin hydration and transepidermal water transport in the fetus and newborn infant.
25

Role of water channels in kidney and lung

Li, Yanhong, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 4 uppsatser.
26

Aquaporin-1 Mediated Fluid Movement in Ocular Tissues

Baetz, Nicholas William January 2009 (has links)
Aquaporin proteins significantly increase water permeability across tissues and cell membranes. Ocular tissues, including the trabecular meshwork (TM) and retinal pigment epithelium (RPE), are especially reliant on aquaporin mediated water movement for ocular homeostasis. Even though bulk fluid movement is paracellular through the TM and transcellular through the RPE, both express aquaporin-1 (AQP1). The role and regulation of AQP1 as it relates to homeostasis in different ocular tissues is not well understood. I hypothesized that ocular tissues respond to external mechanical and molecular cues by altering AQP1 expression and function in order to regulate ocular fluid movement and maintain homeostasis.To test how AQP1 function is altered in response to external cues in order to maintain tissue-specific homeostasis, I addressed the following two aims. The first aim was directed at determining how mechanical strain, an external stimulus that routinely affects TM function, influences AQP1 expression and TM homeostasis. Primary cultures of human TM were subjected to static and cyclic stretch and then analyzed for changes in AQP1 expression by western blot and cell damage by activity of lactate dehydrogense (LDH) in conditioned media. The results show AQP1 expression and LDH release significantly increased with static stretch. Analysis of LDH release with respect to AQP1 expression revealed an inverse linear relationship (r² = 0.7780).The second aim was directed at characterizing signaling mechanisms responsible for regulating fluid transport in RPE, previously shown to be dependent upon AQP1. I treated primary cultures of human RPE with either atrial natriuretic peptide (ANP) or 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP) in the presence or absence of Anantin (ANP-receptor inhibitor) or H-8 (Protein Kinase G inhibitor). The results show that ANP and 8-Br-cGMP significantly increased apical to basal net fluid movement (p < 0.05, n = 3). Inhibition of these effects was successful with Anantin treatment but not with application of H-8.The data presented demonstrate a novel role of protection for AQP1 in TM, and also expand upon cGMP dependent regulation of RPE fluid transport. The combined studies indicate tissue specific AQP1 regulation may offer new avenues to target water movement in treatment of ocular pathologies.
27

Mechanisms of Rupture of Mucin Vesicles from the Slime of Pacific Hagfish (Eptatretus stoutii): Roles of Inorganic Ions and Aquaporin Water Channels

Herr, Julia Emily 28 May 2012 (has links)
Pacific hagfish (Eptatretus stoutii) slime mucin vesicles are released by holocrine secretion with membranes that remain intact until the vesicle contacts seawater and ruptures. This thesis is an investigation of the mechanisms that drive mucin vesicle rupture for mucin release. Using isolated mucin vesicles collected from the slime glands of the hagfish, I tested the effects of a variety of solutions and drugs on vesicle rupture. I found that there are two categories of mucin vesicle that differ in their sensitivity to calcium ions, and that calcium-dependent vesicle rupture was inhibited with anion channel inhibitors. I also found that vesicle swelling rate was reduced by the aquaporin inhibitor mercuric chloride. Together, these data suggest that mucin vesicle rupture is partially dependent on the movement of chloride ions from seawater through calcium-activated anion channels and the rapid influx of water through aquaporin-like proteins in the vesicle membrane. / NSERC Discovery Grant, NSERC CGSM scholarship, Canada Foundation for Innovation, Ontario Ministry of Research and Innovation
28

Hormonal Regulation of Vaginal Mucosa

Kunovac Kallak, Theodora January 2015 (has links)
Vaginal atrophy symptoms such as dryness, irritation, and itching, are common after menopause. Vaginal estrogen therapy is the most effective treatment but not appropriate for all women. Women with estrogen-responsive breast cancer treated with aromatase inhibitor (AI) treatment, suppressing estrogen levels, often suffer from more pronounced vaginal atrophy symptoms. However, vaginal estrogen treatment is not recommended, leaving them without effective treatment options. The aim of this thesis was to study the effect of long-term anti-estrogen therapy on circulating estrogen levels and biochemical factors in vaginal mucosa in relation to morphological changes and clinical signs of vaginal atrophy. Circulating estrogen levels were analyzed by use of mass spectrometry and radioimmunoassay. Immunohistochemistry was used to study vaginal proliferation and steroid hormone receptors in vaginal mucosa. Vaginal gene expression was studied by use of microarray technology and bioinformatic tools, and validated by use of quantitative real-time PCR and immunohistochemistry. An estrogenic regulation of aquaporins and a possible role in vaginal dryness was investigated in vaginal mucosa and in Vk2E6E7 cells. Aromatase inhibitor-treated women had higher than expected estradiol and estrone levels but still significantly lower than other postmenopausal women. Aromatase was detected in vaginal tissue, the slightly stronger staining in vaginal mucosa from AI-treated women, suggest a local inhibition of vaginal aromatase in addition to the systemic suppression. Vaginal mucosa from AI-treated women had weak progesterone receptor, and strong androgen receptor staining intensity. Low estrogen levels lead to low expression of genes involved in cell adhesion, proliferation, and differentiation as well as weak aquaporin 3 protein immunostaining. The higher than expected estrogen levels in AI-treated women suggest that estrogen levels might previously have been underestimated. Systemic estrogen suppression by treatment with AIs, and possibly also by local inhibition of vaginal aromatase, results in reduced cell adhesion, proliferation, differentiation, and weak aquaporin 3 protein staining. Low proliferation and poor differentiation leads to fewer and less differentiated superficial cells affecting epithelial function and possibly also causing vaginal symptoms. Aquaporin 3 with a possible role in vaginal dryness, cell proliferation, and differentiation should be further explored for the development of non-hormonal treatment options for vaginal symptoms.
29

Effect of water deprivation on aquaporin 4 (AQP4) mRNA expression in chickens (Gallus domesticus)

SAITO, Noboru, IKEGAMI, Hidehiro, SHIMADA, Kiyoshi 11 1900 (has links)
No description available.
30

Etude de la relation mycoparasitaire Trichoderma harzianum avec Fusarium solani chez l’Olivier ; caractérisations moléculaires et fonctionnelles des aquaporines chez Trichoderma harzianum / Study of mycoparasitic relationship between Trichoderma harzianum with Fusarium solani in Olive trees; Molecular and functional characterizations of aquaporins from Trichoderma harzianum

Ben Amira, Maroua 24 May 2018 (has links)
La lutte biologique par utilisation de micro-organismes a indéniablement un potentiel de développement considérable. Dans un contexte multidisciplinaire et fondamental de physio-phytopathologie moléculaire et répondant à d’éminents enjeux appliqués et attendus par les acteurs de la profession oléicole et les consommateurs, nous nous sommes projetés dans l’étude des propriétés intrinsèques d’un agent de biocontrôle fongique, Trichoderma harzianum (souche Ths97) contre l’agent de la fusariose Fusarium solani (souche Fso14), qui sévit sévèrement sur une culture pérenne majeure pour la Tunisie, l’oléiculture. Deux axes de recherche ont été menés. Dans le premier axe, nous avons démontré que Ths97 est un agent de biocontrôle efficace contre la virulence de F. solani Fso14. Cette capacité s’accompagne d’une accumulation des défenses chez le partenaire végétal, des accumulations qui sont d’autant plus fortes quand l’agent bénéfique est en présence du pathogène (événements de priming). De même, des tests in vitro montrent que Ths97développe des activités mycoparasites envers F. solani Fso14, en émettant des structures d’infection classiques tels des enroulements et accolements d’hyphes, des appressoria et des papilles. Quant au second axe d’étude, nous avons étudié la superfamille des perméases Major Intrinsic Proteins (MIP) dans le genre Trichoderma. Cette famille multigénique n’a jamais été étudiée chez un agent fongique hyperparasite. Sept membres MIP sont présents chez T. harzianum, et se classent en 3 sous-groupes, les AQP, les AQGP et les XIP. La modélisation des structures tridimensionnelles et les fonctions putatives de transport pour l’eau et quelques polyols ont été étudiées. Enfin, leurs patrons transcriptionnels ont été suivis chez Ths97 in planta en situation d’antagonisme et in vitro en situation de parasitisme vis-à-vis de Fso14, et montrent que 4 MIP sont exprimées et régulées différentiellement selon que Ths97 est au contact de Fso14 ou pas. Nos travaux ont donc mis en lumière que Ths97 doit être considéré comme un agent biofongicide et biostimulateur de défenses végétales, puis que les MIP seraient impliqués dans les relations trophiques que met en place T. harzianum avec son environnement. Ces données devraient intégrer le développement de procédés plus efficaces et/ou plus durables pour la protection des cultures d’oliviers en Tunisie ainsi qu’à travers le monde. / Biological disease control through the use of microorganisms has a great potential for future use in integrated pest management. In a multidisciplinary and fundamental context of molecular physio-phytopathology and to provide solutions for the actors in the olive profession and the consumers, we have been studying the activity of a fungal biocontrol agent, Trichoderma harzianum (strain Ths97) against the olive tree pathogen Fusarium solani (strain Fso14), which causes major problems for olive production in Tunisia and elsewhere. The project consists of two parts. In the first part, we have demonstrated that Ths97 is a biocontrol agent effective against the F. solani Fso14 pathogen. Induction of plant defence responses by Ths97 was shown to be partly responsible for the biocontrol effect. In vitro tests further showed that Ths97 develops mycoparasitic activities towards F. solani Fso14, by forming infection structures such as hyphae windings and wedges, appressoria and papillae. In the second part of the study, we investigated the Major Intrinsic Proteins (MIP) superfamily in the Trichoderma genus. This multigenic family has never been investigated in a hyperparasitic fungal species. Seven MIP members are present in T. harzianum, and are classified into 3 subgroups: AQP, AQGP and XIP. Their three-dimensional structures and their putative involvement in transport of water and certain polyols have been examined. Finally, their transcription profiles were monitored in Ths97 in planta in antagonistic situations and in vitro in a parasitic situation with Fso14 and show that 4 MIP are expressed and regulated differentially during the interaction. Our work has shown that Ths97 must be considered as a biological control agent and biostimulator of plant defences, and that MIPs are involved in the trophic relationships between T. harzianum and the environment. These data contributes to the further development of T. harzianum as an efficient biocontrol agent for sustainable protection of olive trees in Tunisia and around the world.

Page generated in 0.0485 seconds