• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 4
  • 1
  • Tagged with
  • 17
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aproveitamento do resíduo fibra de soja na produção de enzimas hemicelulolíticas por aspergillus nidulans recombinante e aplicação na produção de xilo-oligossacarídeos

Pereira, Gabriela Feix January 2017 (has links)
A fibra de soja (FS) é um resíduo agroindustrial lignocelulósico proveniente do processamento da soja, que, apesar de apresentar potencial para aproveitamento em bioprocessos, é empregado em produtos com baixo valor agregado, como ração animal. A fibra apresenta composição rica em hemicelulose e baixa concentração de lignina, o que destaca ainda mais seu potencial como substrato em bioprocessos. Tendo em vista o presente contexto, este trabalho teve como objetivo o aproveitamento da fibra de soja na produção das enzimas hemicelulolíticas xilanase e arabinofuranosidase por meio do cultivo em estado sólido de duas linhagens de Aspergillus nidulans recombinantes, e a subsequente aplicação dessas enzimas na produção de xilo-oligossacarídeos (XOS). A produção das enzimas foi realizada em três etapas avaliando-se os seguintes fatores: umidade, onde quatro diferentes níveis de umidade foram testados (53 %, 68 %, 76 % e 81 %), adição ou não de tampão HEPES e presença de maltose em duas concentrações (2% e 6 %). As maiores atividades enzimáticas ocorreram em cultivo com umidade de 68 %, presença do tampão HEPES (100 mM), ausência de maltose e em tempos de cultivo de 72 h para xilanase e 96 h para arabinofuranosidase. A produção de XOS foi obtida a partir da aplicação dos extratos enzimáticos brutos obtidos na etapa anterior tendo como substrato a fibra de soja. As produções de xilobiose (X2), xilotriose (X3) e xilotetraose (X4) foram otimizadas por planejamento composto central (DCCR), gerando uma superfície de resposta a partir das variáveis temperatura e concentração de xilanase. A melhor condição obtida (50 °C e 117 U·g-1 de FS) foi utilizada para avaliar a produção de XOS pela adição em conjunto do extrato bruto contendo xilanase com o extrato bruto contendo diferentes concentrações de arabinofuranosidase. O rendimento na produção de XOS neste trabalho foi de 28,8 % (p/p), sendo 138,36 mg·g-1 de xilana a concentração de xilobiose, 96,96 mg·g- 1 de xilana a concentração de xilotriose e 53,04 mg·g-1 de xilana a concentração de xilotetraose, todas em 9 h de reação. A fibra de soja demonstrou ser um substrato adequado para a produção de xilanase e arabinofuranosidase, sendo produzidas altas concentrações de ambas as enzimas. Através da aplicação dessas enzimas obteve-se alta conversão de xilana em diferentes XOS, principalmente aqueles com baixo grau de polimerização, utilizados industrialmente como ingrediente alimentar. / Soybean fiber (SF) is a lignocellulosic agroindustrial residue from the processing of soybean, which, despite having potential in bioprocesses, is used in products with low added value. The fiber is rich in hemicellulose and low concentrations of lignin, which further highlights its potential as a bioprocesses substrate. Considering present context, this work had as objective the use of soybean fiber in production of hemicellulolytic enzymes xylanase and arabinofuranosidase under solid state cultivation of two strains of recombinant Aspergillus nidulans, and the subsequent application of these enzymes in the production of xylooligosaccharides (XOS). Enzyme production was performed in three stages, with the following factors: moisture, where four different moisture levels were tested (53 %, 68 %, 76 % and 81 %), addition or absence of HEPES buffer and presence of maltose in two concentrations (2 % and 6 %). The major enzymatic activities occurred in cultures with moisture of 68 %, presence of HEPES buffer (100 mM), absence of maltose and at 72 h culture times for xylanase and 96 h for arabinofuranosidase. The production of XOS was obtained from the application of the crude enzymatic extracts obtained in the previous step with soybean fiber as the substrate. The production of xylobiose (X2), xylotriose (X3), and xylotetraose (X4) was optimized by central composite design (CCD), generating a response surface from the temperature and xylanase concentration variables. The best condition obtained (50 °C and 117 U·g-1 of SF) Was used to evaluate XOS production by the addition of the crude xylanase-containing crude extract containing the crude extract containing different concentrations of arabinofuranosidase. The yield of XOS in this work was 28.8 % (w/w), being the concentration of xylobiose 138.36 mg·g-1 of xylan, xylotriose concentration 96.96 mg·g-1 of xylan, and xylotetraose concentration 53.04 mg·g-1 of xylan in 9 h of reaction. Soybean fiber has been shown to be a suitable substrate for the production of xylanase and arabinofuranosidase, with high concentrations of both enzymes produced. Through the application of these enzymes, high conversion of xylan to different XOS was achieved, especially those with low degree of polymerization, used industrially as a food ingredient.
12

An Investigation Of Bacterial And Fungal Xylanolytic Systems

Ersayin Yasinok, Aysegul 01 November 2006 (has links) (PDF)
Endo-b-1,4 xylanases (EC. 3.2.1.8) are typically produced as a mixture of different hydrolytic enzymes such as b-1,4-xylosidase (EC. 3.2.1.37) , a-Larabinofuranosidases (EC. 3.2.1.55), and feruloyl esterase (EC 3.1.1.73) that hydrolyze xylan molecule, which constitutes 20-30% of the weight of wood and agricultural wastes. Thus, xylan, a renewable biomass, can be utilized as a substrate for the preparation of many products such as fuels, solvents and pharmaceuticals. Besides, xylanolytic enzymes themselves are also used in food,feed, textile industries and pre-bleaching of kraft. In the first part of the study, xylanolytic systems of a soil isolate Bacillus pumilus SB-M13 and a thermophilic fungus Scytalidium thermophilum were investigated. Production rate and type of xylanolytic changed depending on the carbon source and the microorganism. However, xylanolytic enzyme production was found to be sequential, in synergy and under the control of carbon catabolite repression for both microorganisms. In the second part, B. pumilus SB-M13 b-1,4 xylanase was purified and biochemically characterized. The enzyme was stable at alkaline pHs and highest activity was observed at 60&deg / C and pH 7.5. Enzyme Km and kcat values were determined as 1.87 mg/ml and 43,000 U/mg, respectively. B. pumilus SB-M13 and S .thermophilum a-L-arabinofuranosidases were also purified and biochemically characterized. Although produced from a mesophilic microorganism, B. pumilus SB-M13 arabinofuranosidase was quite thermostable. Moreover, unlike other fungi, S. thermophilum produced alkaline stable arabinofuranosidases. Both enzymes were multimeric, alkaline stable and most active at 70&deg / C and pH 7.0. However, when compared to S. thermophilum, catalytic power of B. pumilus SB-M13 arabinofuranosidase was higher.
13

Produção de celulases e hemicelulases a partir do sorgo sacarino / Production of cellulases and hemicellulases from sorghum sorghum

LINS, Simone Aparecida da Silva. 16 August 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-08-16T19:18:30Z No. of bitstreams: 1 SIMONE APARECIDA DA SILVA LINS – TESE (PPGEQ) 2017.pdf: 2648257 bytes, checksum: 5e08d81aaa5973d7c6fd8bac23c313cc (MD5) / Made available in DSpace on 2018-08-16T19:18:30Z (GMT). No. of bitstreams: 1 SIMONE APARECIDA DA SILVA LINS – TESE (PPGEQ) 2017.pdf: 2648257 bytes, checksum: 5e08d81aaa5973d7c6fd8bac23c313cc (MD5) Previous issue date: 2017-02-21 / Atualmente o Instituto Agronômico de Pernambuco (IPA) vem desenvolvendo cultivares de Sorgo Sacarino com elevado potencial de produção de etanol, principalmente em períodos de entressafra da cultura canavieira. A cultivar IPA P222 além de apresentar potencial para a produção de etanol possui elevado teor de hemicelulose e celulose, tornam-se fonte de grande interesse para a produção de derivados biotecnológicos, agregando valor aos resíduos desse processo de produção. O objetivo do trabalho foi estudar a produção de enzimas celulolíticas e hemicelulolíticas a partir da fermentação semissólida do bagaço de sorgo sacarino (IPA P222) incrementado com farelo de trigo como fonte indutora utilizando o fungo Trichoderma reesei LCB 48. Os substratos da fermentação foram caracterizados e o estudo da produção das enzimas celulases (CMCase e FPase) e hemicelulases (Endo-β-1,4-xilanase e α-L-arabinofuranosidase) foram realizados usando planejamento experimental 2 2 e 4 pontos centrais e acompanhamento cinético da produção por 240 horas, analisando a influência da umidade e teor de farelo de trigo na produção das enzimas. A caracterização do bagaço do sorgo sacarino (BSS) demonstrou que é um substrato com potencial para ser utilizado na fermentação para produção de enzimas celulolíticas e hemicelulolíticas, por apresentar alto teor de hemicelulose e celulose satisfatório. A caracterização do farelo de trigo (FT) demonstrou que ele é uma fonte de nitrogênio importante para a indução das enzimas. As análises termogravimétricas (TG e DTG) e difração de raios-x (DRX) demonstrou que a hemicelulose obtida apresenta características amorfa e picos característicos da hemicelulose de acordo com a literatura. As isotermas de dessorção dos substratos apresentaram correlação e o modelo de GAB forneceu um bom ajuste para os dados experimentais dos substratos. As variáveis umidade inicial e teor de farelo de trigo influenciaram a atividade enzimática das celulases (CMCase e FPase) e hemicelulases (Endo-β-1,4-xilanase e α-L-arabinofuranosidase). As maiores atividades de FPase, CMCase, xilanase e α-L-arabinofuranosidase foram obtidas quando aplicado o maior teor de farelo de trigo (50 %) ao bagaço do sorgo sacarino IPA P222, porém, em tempos diferentes fato esse que facilita em um único processo a obtenção das diferentes enzimas. A xilanase apresentou maior atividade enzimática se comparada as demais, evidenciando que a IPA P222 com elevado teor de hemicelulose é potencialmente mais indutora para essa enzima. O potencial de atuação do extrato enzimático obtido durante a fermentação foi analisado por meio de hidrólise enzimática do sorgo sacarino in natura e da hemicelulose extraída do BSS, no qual o extrato enzimático apresentou capacidade de hidrolisar o bagaço de sorgo in natura e a hemicelulose. / Currently, the Agronomic Institute of Pernambuco (IPA) has been developing sorghum saccharine cultivars with high potential for ethanol production, especially in the off season of the sugar cane crop. The cultivar IPA P222, besides presenting potential for the production of ethanol, has a high content of hemicellulose and cellulose, which is a source of great interest for the production of biotechnological derivatives, adding value to the residues of the production process. Aim of the work for the production of cellulolytic and hemicellulolytic enzymes from the semisynthetic fermentation of sorghum sorghum (IPA P222) Tricoderma reesei LCB 48. The fermentation substrates were characterized by the study of the production of cellulase enzymes (CMCase and FPase) and hemicellulases (Endo -β-1,4-xylanase and α-L-arabinofuranosidase) were performed using experimental design 2 2 and 4 central points and kinetic monitoring of production for 240 hours, analyzing an influence of moisture and wheat bran content on the production of enzymes. The characterization of the sorghum bagasse (BSS) showed that it is a substrate with potential to be used in the fermentation for the production of cellulolytic and hemicellulolytic enzymes, because it has satisfactory content of hemicellulose and cellulose content. A characterization of wheat bran (FT) has been shown to be a source of nitrogen important for induction of enzymes. As thermogravimetric analyzes (TG and DTG) and X-ray diffraction (XRD) showed that a obtained hemicellulose has amorphous characteristics and characteristic peaks of hemicellulose according to the literature. As desorption isotherms of the substrates presented correlation and GAB model, they are suitable for the experimental data of the substrates. As variables, initial moisture and wheat bran content influenced an enzyme enzyme of cellulases (CMCase and FPase) and hemicellulases (Endo-β-1,4-xylanase and α-L-arabinofuranosidase). The major activities of FPase, CMCase, xylanase and α-L-arabinofuranosidase were obtained when applied to the higher wheat bran content (50%) to saccharin saccharin IPA P222, however, the process of obtaining the different enzymes. The xylanase presented higher enzymatic activity if compared as others, evidencing that an IPA P222 with high content of hemicellulose is potentially more inductive for this enzyme. The potential of the enzymatic extract obtained during a fermentation was analyzed by means of enzymatic hydrolysis of in saccharine sorghum and the hemicellulose extracted from the BSS, without which the enzymatic extract had the capacity to hydrolyze or sorghum bagasse and a hemicellulose.
14

Aproveitamento do resíduo fibra de soja na produção de enzimas hemicelulolíticas por aspergillus nidulans recombinante e aplicação na produção de xilo-oligossacarídeos

Pereira, Gabriela Feix January 2017 (has links)
A fibra de soja (FS) é um resíduo agroindustrial lignocelulósico proveniente do processamento da soja, que, apesar de apresentar potencial para aproveitamento em bioprocessos, é empregado em produtos com baixo valor agregado, como ração animal. A fibra apresenta composição rica em hemicelulose e baixa concentração de lignina, o que destaca ainda mais seu potencial como substrato em bioprocessos. Tendo em vista o presente contexto, este trabalho teve como objetivo o aproveitamento da fibra de soja na produção das enzimas hemicelulolíticas xilanase e arabinofuranosidase por meio do cultivo em estado sólido de duas linhagens de Aspergillus nidulans recombinantes, e a subsequente aplicação dessas enzimas na produção de xilo-oligossacarídeos (XOS). A produção das enzimas foi realizada em três etapas avaliando-se os seguintes fatores: umidade, onde quatro diferentes níveis de umidade foram testados (53 %, 68 %, 76 % e 81 %), adição ou não de tampão HEPES e presença de maltose em duas concentrações (2% e 6 %). As maiores atividades enzimáticas ocorreram em cultivo com umidade de 68 %, presença do tampão HEPES (100 mM), ausência de maltose e em tempos de cultivo de 72 h para xilanase e 96 h para arabinofuranosidase. A produção de XOS foi obtida a partir da aplicação dos extratos enzimáticos brutos obtidos na etapa anterior tendo como substrato a fibra de soja. As produções de xilobiose (X2), xilotriose (X3) e xilotetraose (X4) foram otimizadas por planejamento composto central (DCCR), gerando uma superfície de resposta a partir das variáveis temperatura e concentração de xilanase. A melhor condição obtida (50 °C e 117 U·g-1 de FS) foi utilizada para avaliar a produção de XOS pela adição em conjunto do extrato bruto contendo xilanase com o extrato bruto contendo diferentes concentrações de arabinofuranosidase. O rendimento na produção de XOS neste trabalho foi de 28,8 % (p/p), sendo 138,36 mg·g-1 de xilana a concentração de xilobiose, 96,96 mg·g- 1 de xilana a concentração de xilotriose e 53,04 mg·g-1 de xilana a concentração de xilotetraose, todas em 9 h de reação. A fibra de soja demonstrou ser um substrato adequado para a produção de xilanase e arabinofuranosidase, sendo produzidas altas concentrações de ambas as enzimas. Através da aplicação dessas enzimas obteve-se alta conversão de xilana em diferentes XOS, principalmente aqueles com baixo grau de polimerização, utilizados industrialmente como ingrediente alimentar. / Soybean fiber (SF) is a lignocellulosic agroindustrial residue from the processing of soybean, which, despite having potential in bioprocesses, is used in products with low added value. The fiber is rich in hemicellulose and low concentrations of lignin, which further highlights its potential as a bioprocesses substrate. Considering present context, this work had as objective the use of soybean fiber in production of hemicellulolytic enzymes xylanase and arabinofuranosidase under solid state cultivation of two strains of recombinant Aspergillus nidulans, and the subsequent application of these enzymes in the production of xylooligosaccharides (XOS). Enzyme production was performed in three stages, with the following factors: moisture, where four different moisture levels were tested (53 %, 68 %, 76 % and 81 %), addition or absence of HEPES buffer and presence of maltose in two concentrations (2 % and 6 %). The major enzymatic activities occurred in cultures with moisture of 68 %, presence of HEPES buffer (100 mM), absence of maltose and at 72 h culture times for xylanase and 96 h for arabinofuranosidase. The production of XOS was obtained from the application of the crude enzymatic extracts obtained in the previous step with soybean fiber as the substrate. The production of xylobiose (X2), xylotriose (X3), and xylotetraose (X4) was optimized by central composite design (CCD), generating a response surface from the temperature and xylanase concentration variables. The best condition obtained (50 °C and 117 U·g-1 of SF) Was used to evaluate XOS production by the addition of the crude xylanase-containing crude extract containing the crude extract containing different concentrations of arabinofuranosidase. The yield of XOS in this work was 28.8 % (w/w), being the concentration of xylobiose 138.36 mg·g-1 of xylan, xylotriose concentration 96.96 mg·g-1 of xylan, and xylotetraose concentration 53.04 mg·g-1 of xylan in 9 h of reaction. Soybean fiber has been shown to be a suitable substrate for the production of xylanase and arabinofuranosidase, with high concentrations of both enzymes produced. Through the application of these enzymes, high conversion of xylan to different XOS was achieved, especially those with low degree of polymerization, used industrially as a food ingredient.
15

Aproveitamento do resíduo fibra de soja na produção de enzimas hemicelulolíticas por aspergillus nidulans recombinante e aplicação na produção de xilo-oligossacarídeos

Pereira, Gabriela Feix January 2017 (has links)
A fibra de soja (FS) é um resíduo agroindustrial lignocelulósico proveniente do processamento da soja, que, apesar de apresentar potencial para aproveitamento em bioprocessos, é empregado em produtos com baixo valor agregado, como ração animal. A fibra apresenta composição rica em hemicelulose e baixa concentração de lignina, o que destaca ainda mais seu potencial como substrato em bioprocessos. Tendo em vista o presente contexto, este trabalho teve como objetivo o aproveitamento da fibra de soja na produção das enzimas hemicelulolíticas xilanase e arabinofuranosidase por meio do cultivo em estado sólido de duas linhagens de Aspergillus nidulans recombinantes, e a subsequente aplicação dessas enzimas na produção de xilo-oligossacarídeos (XOS). A produção das enzimas foi realizada em três etapas avaliando-se os seguintes fatores: umidade, onde quatro diferentes níveis de umidade foram testados (53 %, 68 %, 76 % e 81 %), adição ou não de tampão HEPES e presença de maltose em duas concentrações (2% e 6 %). As maiores atividades enzimáticas ocorreram em cultivo com umidade de 68 %, presença do tampão HEPES (100 mM), ausência de maltose e em tempos de cultivo de 72 h para xilanase e 96 h para arabinofuranosidase. A produção de XOS foi obtida a partir da aplicação dos extratos enzimáticos brutos obtidos na etapa anterior tendo como substrato a fibra de soja. As produções de xilobiose (X2), xilotriose (X3) e xilotetraose (X4) foram otimizadas por planejamento composto central (DCCR), gerando uma superfície de resposta a partir das variáveis temperatura e concentração de xilanase. A melhor condição obtida (50 °C e 117 U·g-1 de FS) foi utilizada para avaliar a produção de XOS pela adição em conjunto do extrato bruto contendo xilanase com o extrato bruto contendo diferentes concentrações de arabinofuranosidase. O rendimento na produção de XOS neste trabalho foi de 28,8 % (p/p), sendo 138,36 mg·g-1 de xilana a concentração de xilobiose, 96,96 mg·g- 1 de xilana a concentração de xilotriose e 53,04 mg·g-1 de xilana a concentração de xilotetraose, todas em 9 h de reação. A fibra de soja demonstrou ser um substrato adequado para a produção de xilanase e arabinofuranosidase, sendo produzidas altas concentrações de ambas as enzimas. Através da aplicação dessas enzimas obteve-se alta conversão de xilana em diferentes XOS, principalmente aqueles com baixo grau de polimerização, utilizados industrialmente como ingrediente alimentar. / Soybean fiber (SF) is a lignocellulosic agroindustrial residue from the processing of soybean, which, despite having potential in bioprocesses, is used in products with low added value. The fiber is rich in hemicellulose and low concentrations of lignin, which further highlights its potential as a bioprocesses substrate. Considering present context, this work had as objective the use of soybean fiber in production of hemicellulolytic enzymes xylanase and arabinofuranosidase under solid state cultivation of two strains of recombinant Aspergillus nidulans, and the subsequent application of these enzymes in the production of xylooligosaccharides (XOS). Enzyme production was performed in three stages, with the following factors: moisture, where four different moisture levels were tested (53 %, 68 %, 76 % and 81 %), addition or absence of HEPES buffer and presence of maltose in two concentrations (2 % and 6 %). The major enzymatic activities occurred in cultures with moisture of 68 %, presence of HEPES buffer (100 mM), absence of maltose and at 72 h culture times for xylanase and 96 h for arabinofuranosidase. The production of XOS was obtained from the application of the crude enzymatic extracts obtained in the previous step with soybean fiber as the substrate. The production of xylobiose (X2), xylotriose (X3), and xylotetraose (X4) was optimized by central composite design (CCD), generating a response surface from the temperature and xylanase concentration variables. The best condition obtained (50 °C and 117 U·g-1 of SF) Was used to evaluate XOS production by the addition of the crude xylanase-containing crude extract containing the crude extract containing different concentrations of arabinofuranosidase. The yield of XOS in this work was 28.8 % (w/w), being the concentration of xylobiose 138.36 mg·g-1 of xylan, xylotriose concentration 96.96 mg·g-1 of xylan, and xylotetraose concentration 53.04 mg·g-1 of xylan in 9 h of reaction. Soybean fiber has been shown to be a suitable substrate for the production of xylanase and arabinofuranosidase, with high concentrations of both enzymes produced. Through the application of these enzymes, high conversion of xylan to different XOS was achieved, especially those with low degree of polymerization, used industrially as a food ingredient.
16

Etudes structures/Fonctions et Ingénierie de l'alpha-L-arabinofuranosidase de Thermobacillus Xylanilyticus / Structure/functions studies and engineering of the Thermobacillus xylanilyticus alpha-L-arabinofuranosidase

Arab-Jaziri, Faten 23 October 2012 (has links)
Dans ce projet de thèse, une variété de techniques a été employée pour étudier l’alpha-L-arabinofuranosidase de Thermobacillus xylanilyticus (TxAbf), notamment en ce qui concerne les relations structure/fonctions et son activité de transglycosylation. Nos travaux ont eu pour objectif d’apporter un éclairage quant au rôle de la dynamique dans l’activité catalytique de la TxAbf, en se focalisant sur le mouvement de la boucle bêta2alpha2, et d’explorer la spécificité du sous-site [+1], un élément du site actif qui est particulièrement pertinent pour l’activité de transglycosylation. Enfin, nous avons entrepris des travaux d’ingénierie visant la création de transarabinofuranosylases performantes. Nos résultats confirment le rôle important de la boucle bêta2alpha2 et suggèrent que le mouvement de celle-ci permet de relocaliser les résidus His98 et Trp99 de manière à créer un site actif opérationnel. Le résidu Trp99 apparaît comme un élément clé du sous-site [-1] de la TxAbf, alors que le résidu His98, qui n’est pas conservé dans l’ensemble des enzymes de la famille GH51, participerait à la formation d’un sous-site [+2’]. Concernant le sous-site [+1], nos résultats confirment la large spécificité celui-ci et montrent clairement que l’encombrement stérique à la position C-5 des glycosides accepteurs est défavorable à la réaction de transglycosylation. Par ailleurs, nous avons pu réaliser pour la première fois la synthèse de trisaccharides, utilisant comme accepteur l’alpha-D-xylobioside de benzyle et comme donneur le β-D-galactofuranoside de para-nitrophényle. Enfin, nos travaux de mutagenèse aléatoire et le criblage de banques a permis d’identifier deux mutations Phe26Leu et Trp178Arg, qui se situent au niveau des sous-sites [-1] et [+1], respectivement. Selon nos premières analyses, les mutants correspondants rendraient moins favorable la déglycosylation de l’intermédiaire glycosyl-enzyme par une molécule d’eau, réduisant ainsi l'hydrolyse secondaire et stabilisant par la même occasion le produit de synthèse. En employant une deuxième méthode de criblage plus sophistiquée, impliquant l’utilisation d’accepteurs xylo-oligosaccharidiques, nous avons pu obtenir des enzymes mutées qui (i) catalysent des réactions de transglycosylation en présence de xylobiose (l’enzyme sauvage ne catalysant que très faiblement cette réaction) (ii) se caractérisent par une absence quasi-totale d’hydrolyse secondaire et (iii) comportent des mutations situées à différentes positions (e.g. au niveau des sous-sites [-1], [+1] et [+2’]) et qui semblent moduler le ratio Transglycosylation/Hydrolyse en faveur de la synthèse / In this investigation, a variety of techniques to study the Thermobacillus xylanilyticus alpha-L-arabinofuranosidase (TxAbf) have been employed, especially with regard to structure-functions relations and the enzyme’s ability to catalyze transglycosylation reactions. The aim of our work was to better understand the dynamic role of the bêta2alpha2 loop and to explore the substrate specificity of the subsite [+1], an important active site element with respect to transglycosylation. Finally, this work has focused on the creation of new transarabinofuranosylases using random engineering and screening approaches.Our results confirm the important role of the bêta2alpha2 loop and suggest that its movement during catalysis relocalizes residues His98 and Trp99 and thus permits the formation of a catalytically-viable active site configuration. Trp99 is relocalized from a solvent exposed position into a buried position and forms a critical element of subsite [-1], whereas His98, a residue that is not conserved in all GH51 members, appears to form a part of subsite [+2’]. Regarding subsite [+1], our results confirm its wide specificity and indicate that steric bulkiness at the C-5 position of glycoside acceptors leads to reduced transglycosylation. In this work, we have also demonstrated for the first time the synthesis by TxAbf of trisaccharides, using benzyl alpha-D-xylobioside as the acceptor and para-nitrophenyl β-D-galactofuranoside as the donor. Finally, random mutagenesis and screening has led to the identification of two mutations Phe26Leu and Trp178Arg, which are located in sub-sites [-1] and [+1] respectively, that appear to reduce the water-mediated deglycosylation of the glycosyl-enzyme intermediate. Consequently, the corresponding mutants reduce secondary hydrolysis and favourably affect the operational stability of synthetic products. Using a second more sophisticated screening method that involves the use of xylo-oligosaccharide acceptors, it has been possible to isolate mutant enzymes that (i) catalyze transglycosylation reactions in the presence of xylobioside (a reaction that is poorly catalyzed by wild type TxAbf), (ii) show almost no secondary hydrolysis, (iii) display point mutations at several key locations (e.g. in sub-sites [-1], [+1] and [+2’]) that seem to modulate the Transglycosylation/Hydrolysis ratio in favour of synthesis
17

Découverte de nouvelles enzymes de dégradation des polysaccharides végétaux par métagénomique fonctionnelle / Discovery of new lignocellulases by functional metagenomics

Bastien-Uluis, Geraldine 08 June 2012 (has links)
Une approche de métagénomique fonctionnelle a été mise en œuvre afin d’étudier les arsenaux enzymatiques produits par les microbiotes intestinaux de termites phytophages et d’identifier de nouvelles enzymes impliquées dans l’hydrolyse des polysaccharides végétaux, notamment des hétéroxylanes. Le criblage à haut débit des banques métagénomiques constituées à partir de trois espèces de termites sur une gamme de substrats chromogéniques a permis d’identifier plusieurs centaines de clones à activité dépolymérisante (glucanase, xylanase, mannanase, arabinanase), ainsi que des clones exprimant des activités auxiliaires (α-L-arabinofuranosidases, β-D-xylosidases, cellobiose hydrolases). Un total de 42 clones métagénomiques a été séquencé, générant 1,5 Mpb d’ADN assemblé en 58 séquences contigües d’une taille moyenne de 37,8 Kbp. 63 nouvelles Glycoside Hydrolases (GH) ont été identifiées. Ces dernières représentent 19 familles de la classification CAZy, dont les familles GH3, GH8, GH10, GH11, GH43 et GH51. Enfin, huit nouvelles enzymes des familles GH43 et GH51 ont été produites chez E. coli et leurs propriétés biochimiques ont été étudiées. Ces enzymes présentent des activités α-L-arabinofuranosidase, β-D-xylosidase ou L-arabinanase / A functional metagenomics approach was used to reveal the enzymatic diversity present in the guts of biomass-feeding termites and to identify enzymes involved in the degradation of biomass components, notably heteroxylans. High-throughput screening of metagenomic libraries, created using three different termite species, was performed using a variety of chromogenic substrates. This allowed the discovery of hundreds of clones expressing targeted biomass-degrading activities (e.g. depolymerases such as glucanase, xylanase, mannanase arabinanase and auxiliary activities such as α-L-arabinofuranosidases, β-D-xylosidases and cellobiohydrolases). A total of 42 clones were selected for a DNA sequence analysis, thus generating 1.5 Mbp that were assembled into 58 contiguous sequences. 63 new Glycoside Hydrolases (GH) belonging to 19 different families of the CAZy classification were identified, including ones from families GH3, GH8, GH10, GH11, GH43 and GH51. Finally, eight new enzymes, from families GH43 and GH51, were produced in E. coli and their biochemical properties were studied. These enzymes display α-L-arabinofuranosidase, β-D-xylosidase or arabinanase activities

Page generated in 0.0521 seconds