• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Involvement of auxin in the arbuscular mycorrhizal symbiosis in tomato / Implication de l'auxine dans la symbiose endomycorhizienne à arbuscules

Etemadi-Shalamzari, Mohammad 17 November 2014 (has links)
La plupart des espèces végétales terrestres vivent en symbiose avec les champignons mycorhiziens à arbuscules (MA). Il s’agit d’une symbiose très ancienne datant de plus de 400 millions d’années. Les champignons MA sont des champignons du sol qui appartiennent aux Gloméromycètes. Ils sont présents dans la plupart des écosystèmes terrestres. Ainsi, ils peuvent être considérés comme une composante intégrale des racines des plantes. Ils forment dans les cellules racinaires corticales des structures fonctionnelles essentielles appelées arbuscules où ils apportent à la plante des minéraux nutritifs en échange de sucres. L’auxine est une phytohormone impliquée dans de nombreux processus de développement des plantes, y compris la dominance apicale, les tropismes, la structuration vasculaire et la formation de racines latérales. Le principal objectif de notre travail était d’étudier de manière approfondie le rôle de l’auxine dans le processus de développement des mycorhizes. On sait déjà que la symbiose MA stimule la formation de racines latérales dans les plantes hôtes, ce qui pourrait être due à une modification du métabolisme de l’auxine, de son transport ou de sa perception. Les microARNs (miARNs) sont des molécules d’ARN non codantes de ~ 21 nucléotides capables de réprimer l’expression de gènes en ciblant et clivant spécifiquement leur ARNm correspondant. Plusieurs miARNs interagissent avec la signalisation de l’auxine et parmi eux miR393 qui cible les récepteurs à l’auxine. Nous avons étudié le rôle de miR393 dans la colonisation mycorhizienne. Nous mettons en évidence que chez Solanum lycopersicum (Solanacées), Medicago truncatula (Fabaceae) et Oryza sativa (Poaceae), l’expression des précurseurs de miR393 diminue lors de la mycorhization. En outre nous montrons que DR5-GUS, un gène rapporteur de réponse à l’auxine, est préférentiellement exprimé dans les cellules de la racine contenant les arbuscules. En sur-exprimant miR393 dans les racines et donc en régulant négativement l’expression des gènes de récepteurs à l’auxine, nous montrons également que les arbuscules ne se développent pas normalement. En tant que composantes des complexes récepteurs d’auxine, les protéines Aux/IAA jouent un rôle majeur dans la voie de signalisation de l’auxine en réprimant l’activité des facteurs de transcription de type ARF. Nous avons vérifié dans des racines de tomate mycorhizées l’expression de 25 gènes AUX/IAA. Nous nous sommes concentrés sur IAA27 dont l’expression est induite lors des premiers stades de la symbiose MA. Nous observons qu’une répression par ARNi de l’expression de IAA27 dans des plants de tomate conduit à une forte diminution de la colonisation MA et du nombre des arbuscules. Puis nous montrons par des approches différentes que la régulation positive de la mycorhization par IAA27 est liée à la biosynthèse des strigolactones. Globalement, ces résultats appuient fortement l’hypothèse selon laquelle la signalisation de l’auxine joue un rôle important aussi bien dans le stade précoce de la mycorhization que dans la formation des arbuscules. / Most land plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. This is a very ancient symbiosis dating back to 450 million years. AM fungi are soil fungi that belong to the Glomeromycota. They are present in most terrestrial ecosystems. Thus they can be considered as an integral root component of plants. They form essential functional structures called arbuscules in root cortical cells at which mineral nutrients are released to the plant in exchange of sugars. The phytohormone auxin is involved in many developmental processes in plants, including apical dominance, tropisms, vascular patterning and lateral root formation. The main objective of our work was to investigate further the role of auxin in the mycorrhizal developmental process. We already know that AM symbiosis stimulates the lateral root formation in host plants, which could be due to modification of auxin metabolism, transport or perception. The microRNAs (miRNAs) are ~21-nucleotides noncoding RNAs that target corresponding mRNA transcripts for cleavage and transcriptional repression. Several miRNAs interact with auxin signaling and among them miR393 that targets auxin receptors. We investigated the role of miR393 in AM root colonization. In Solanum lycopersicum (Solanaceae), Medicago truncatula (Fabaceae) and Oryza sativa (Poaceae), expression of the precursors of the miR393 was down-regulated during mycorrhization. In addition DR5-GUS, a reporter for auxin response, was found to be preferentially expressed in root cells containing arbuscules. By over-expressing miR393 in roots and therefore down-regulating auxin receptor genes, arbuscules could not develop normally. As components of auxin receptor complexes, Aux/IAA proteins play a major role in auxin signaling pathway by repressing the activity of ARF type transcription factors. We checked the expression of 25 AUX/IAA genes in AM roots. Among them, we focused on IAA27 that was significantly up-regulated during the early stages of AM symbiosis. IAA27 down-regulation in plants led to a strong decrease of AM colonization and arbuscule abundance. We showed by different approaches that the positive regulation of mycorrhization by IAA27 was linked to strigolactone biosynthesis. Overall these results strongly support the hypothesis that auxin signaling plays an important role both in the early stage of mycorrhization and in the arbuscule formation.
2

Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns

Mohamed Wahdan, Sara Fareed, Reitz, Thomas, Heintz-Buschart, Anna, Schädler, Martin, Roscher, Christiane, Breitkreuz, Claudia, Schnabel, Beatrix, Purahong, Witoon, Buscot, François 05 June 2023 (has links)
Climate and agricultural practice interact to influence both crop production and soil microbes in agroecosystems. Here, we carried out a unique experiment in Central Germany to simultaneously investigate the effects of climates (ambient climate vs. future climate expected in 50–70 years), agricultural practices (conventional vs. organic farming), and their interaction on arbuscular mycorrhizal fungi (AMF) inside wheat (Triticum aestivum L.) roots. AMF communities were characterized using Illumina sequencing of 18S rRNA gene amplicons. We showed that climatic conditions and agricultural practices significantly altered total AMF community composition. Conventional farming significantly affected the AMF community and caused a decline in AMF richness. Factors shaping AMF community composition and richness at family level differed greatly among Glomeraceae, Gigasporaceae and Diversisporaceae. An interactive impact of climate and agricultural practices was detected in the community composition of Diversisporaceae. Organic farming mitigated the negative effect of future climate and promoted total AMF and Gigasporaceae richness. AMF richness was significantly linked with nutrient content of wheat grains under both agricultural practices.
3

Analysis of Medicago truncatula transcription factors involved in the arbuscular mycorrhizal symbiosis

Bortfeld, Silvia January 2013 (has links)
For the first time the transcriptional reprogramming of distinct root cortex cells during the arbuscular mycorrhizal (AM) symbiosis was investigated by combining Laser Capture Mirodissection and Affymetrix GeneChip® Medicago genome array hybridization. The establishment of cryosections facilitated the isolation of high quality RNA in sufficient amounts from three different cortical cell types. The transcript profiles of arbuscule-containing cells (arb cells), non-arbuscule-containing cells (nac cells) of Rhizophagus irregularis inoculated Medicago truncatula roots and cortex cells of non-inoculated roots (cor) were successfully explored. The data gave new insights in the symbiosis-related cellular reorganization processes and indicated that already nac cells seem to be prepared for the upcoming fungal colonization. The mycorrhizal- and phosphate-dependent transcription of a GRAS TF family member (MtGras8) was detected in arb cells and mycorrhizal roots. MtGRAS shares a high sequence similarity to a GRAS TF suggested to be involved in the fungal colonization processes (MtRAM1). The function of MtGras8 was unraveled upon RNA interference- (RNAi-) mediated gene silencing. An AM symbiosis-dependent expression of a RNAi construct (MtPt4pro::gras8-RNAi) revealed a successful gene silencing of MtGras8 leading to a reduced arbuscule abundance and a higher proportion of deformed arbuscules in root with reduced transcript levels. Accordingly, MtGras8 might control the arbuscule development and life-time. The targeting of MtGras8 by the phosphate-dependent regulated miRNA5204* was discovered previously (Devers et al., 2011). Since miRNA5204* is known to be affected by phosphate, the posttranscriptional regulation might represent a link between phosphate signaling and arbuscule development. In this work, the posttranscriptional regulation was confirmed by mis-expression of miRNA5204* in M. truncatula roots. The miRNA-mediated gene silencing affects the MtGras8 transcript abundance only in the first two weeks of the AM symbiosis and the mis-expression lines seem to mimic the phenotype of MtGras8-RNAi lines. Additionally, MtGRAS8 seems to form heterodimers with NSP2 and RAM1, which are known to be key regulators of the fungal colonization process (Hirsch et al., 2009; Gobbato et al., 2012). These data indicate that MtGras8 and miRNA5204* are linked to the sym pathway and regulate the arbuscule development in phosphate-dependent manner. / Die Leguminose Medicago truncatula (gehört zur Gattung des Schneckenklees) ist in der Lage sowohl eine Symbiose mit stickstofffixierenden Bakterien (Rhizobien), als auch mit Mykorrhiza-Pilzen einzugehen. Der Mykorrhiza-Pilz Rhizophagus irregularis dringt in die Wurzelrindenzellen ein und bildet Strukturen aus, die als Arbuskeln bezeichnet werden. Diese ermöglichen den Transfer von Nährstoffen, wie Phosphat in die Wurzelzellen. Die Pflanze liefert hingegen bis zu 20 % ihrer Photosyntheseprodukte an den Pilz. Da die Lebenszeit der Arbuskeln nur wenige Tage beträgt, können Wurzelrindenzellen mehrere Arbuskeln nacheinander beherbergen. Somit können neben arbuskelhaltigen, auch nicht-arbuskelhaltige Zellen in kolonisierten Wurzeln auftreten. Die nicht-arbuskelhaltigen Zellen beeinträchtigen die Sensitivität von Genregulationsanalysen, wenn die Genregulation während der Mykorrhiza-Symbiose anhand von ganzen kolonisierten Wurzeln untersucht wird. In dieser Arbeit konnte eine Zelltyp-spezifische Analyse der Genregulation von arbuskelhaltigen und nicht-arbuskelhaltigen Zellen durchgeführt, und eine Erhöhung der Sensitivität erreicht werden. Mittels Laser Capture Microdissection wurden Zellen aus Gefrierschnitten von Wurzeln isoliert. Aus den so gewonnen Zellen konnte RNA von ausreichender Qualität und Quantität extrahiert werden, um das Transkriptom der beiden Zelltypen mittels Mikroarrayhybridisierung zu untersuchen. Transkriptionsfaktoren (TFs) spielen wahrscheinlich eine Schlüsselrolle in der Umprogrammierung von Wurzelzellen während der Mykorrhiza-Symbiose. Daher wurde die Genregulation von TF-Genen in den zwei Zelltypen gezielt untersucht. Anhand von quantitativer RT-PCR und Promoter-Reporter-Fusionen wurde die differentielle Expression von mehreren TF-Transkripten in den verschiedenen Zelltypen bestätigt. Die Charakterisierung eines potentiellen GRAS TF (MtGRAS8) konnte eine stark Symbiose- und Phosphat-abhängige Induktion von Transkripten bestätigt werden. Mutanten mit verringerter MtGras8 Transkriptmenge wiesen eine verringerte Arbuskelzahl und deformierte Arbuskeln auf. MtGras8 scheint daher an der Arbuskelentwicklung beteiligt zu sein. Vorherige Experimente zeigten, dass MtGras8 Transkripte, von der Phosphat-regulierten MikroRNA5204* geschnitten werden (Devers et al., 2011). Dies konnte durch Überexpression der MikroRNA5204* in vivo bestätigt werden. Weiterhin konnten Protein-Protein-Interaktionen von MtGras8 mit bekannten GRAS TFs (NSP1, NSP2, RAM1) nachgewiesen und daraus eine Verbindung zu bekannten Symbiose-induzierten Signalkaskaden geschlossen werden. In dieser Arbeit wurde erstmals die Umprogrammierung von nicht-arbuskelhaltigen Zellen untersucht und neue Regulationselemente für die Kontrolle der Arbuskelentwicklung, wie MtGRAS8 und MikroRNA5204*, charakterisiert.
4

The Medicago truncatula sucrose transporter family : sugar transport from plant source leaves towards the arbuscular mycorrhizal fungus / Medicago truncatula

Doidy, Joan 23 May 2012 (has links)
Pas de résumé en français / In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide (MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal interactions in arbuscular mycorrhiza (AM), have not yet been investigated.With the recent completion of the M. truncatula genome sequencing as well as the release of transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades: MtSUT1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and MtSUT4-1 are H+/sucrose symporters and represent key members of the MtSUT family. Conservation of transport capacity between orthologous leguminous proteins, expression profiles and subcellular localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for remobilization of intracellular reserve.The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous SUTs in response to colonization by glomeromycotan fungi.In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices expression library suitable for yeast functional complementation and screening of symbiotic marker genes, similar to the approach that led to the identification of the first glomeromycotan hexose transporter (GpMST1), has been developed in this study. [...]
5

Transport processes in the arbuscular mycorrhizal symbiosis

Duensing, Nina January 2013 (has links)
The nutrient exchange between plant and fungus is the key element of the arbuscular mycorrhizal (AM) symbiosis. The fungus improves the plant’s uptake of mineral nutrients, mainly phosphate, and water, while the plant provides the fungus with photosynthetically assimilated carbohydrates. Still, the knowledge about the mechanisms of the nutrient exchange between the symbiotic partners is very limited. Therefore, transport processes of both, the plant and the fungal partner, are investigated in this study. In order to enhance the understanding of the molecular basis underlying this tight interaction between the roots of Medicago truncatula and the AM fungus Rhizophagus irregularis, genes involved in transport processes of both symbiotic partners are analysed here. The AM-specific regulation and cell-specific expression of potential transporter genes of M. truncatula that were found to be specifically regulated in arbuscule-containing cells and in non-arbusculated cells of mycorrhizal roots was confirmed. A model for the carbon allocation in mycorrhizal roots is suggested, in which carbohydrates are mobilized in non-arbusculated cells and symplastically provided to the arbuscule-containing cells. New insights into the mechanisms of the carbohydrate allocation were gained by the analysis of hexose/H+ symporter MtHxt1 which is regulated in distinct cells of mycorrhizal roots. Metabolite profiling of leaves and roots of a knock-out mutant, hxt1, showed that it indeed does have an impact on the carbohydrate balance in the course of the symbiosis throughout the whole plant, and on the interaction with the fungal partner. The primary metabolite profile of M. truncatula was shown to be altered significantly in response to mycorrhizal colonization. Additionally, molecular mechanisms determining the progress of the interaction in the fungal partner of the AM symbiosis were investigated. The R. irregularis transcriptome in planta and in extraradical tissues gave new insight into genes that are differentially expressed in these two fungal tissues. Over 3200 fungal transcripts with a significantly altered expression level in laser capture microdissection-collected arbuscules compared to extraradical tissues were identified. Among them, six previously unknown specifically regulated potential transporter genes were found. These are likely to play a role in the nutrient exchange between plant and fungus. While the substrates of three potential MFS transporters are as yet unknown, two potential sugar transporters are might play a role in the carbohydrate flow towards the fungal partner. In summary, this study provides new insights into transport processes between plant and fungus in the course of the AM symbiosis, analysing M. truncatula on the transcript and metabolite level, and provides a dataset of the R. irregularis transcriptome in planta, providing a high amount of new information for future works. / In der arbuskulären Mykorrhiza (AM) Symbiose werden die Wurzeln fast aller Landpflanzen von Pilzen der Abteilung Glomeromycota besiedelt. Der Pilz erleichtert der Pflanze die Aufnahme von Mineralien, hauptsächlich Phosphat, und Wasser. Im Gegenzug versorgt die Pflanze ihn mit Photoassimilaten. Trotz der zentralen Bedeutung der Austauschmechanismen zwischen Pilz und Pflanze ist nur wenig darüber bekannt. Um die molekularen Grundlagen der Interaktion zwischen den Wurzeln der Leguminose Medicago truncatula und dem arbuskulären Mykorrhizapilz Rhizophagus irregularis besser zu verstehen, werden hier die Transportprozesse, die zwischen den Symbiosepartnern ablaufen, näher untersucht. Die zellspezifische Regulation der Transkription potentieller M. truncatula Transporter Gene in arbuskelhaltigen und nicht-arbuskelhaltigen Zellen mykorrhizierter Wurzeln wird bestätigt. Ein Modell zur möglichen Verteilung von Kohlenhydraten in mykorrhizierten Wurzeln, nach dem Zucker in nicht-arbuskelhaltigen Zellen mobilisiert und symplastisch an arbuskelhaltige Zellen abgegeben werden, wird vorgestellt. Die Analyse eines Mykorrhiza-induzierten Hexose/H+ Symporter Gens, MtHxt1, liefert neue Einsichten in die Mechanismen der Kohlenhydratverteilung in mykorrhizierten Pflanzen. Metabolitanalysen von Wurzeln und Blättern einer knock-out Mutante dieses Gens zeigen dessen Einfluss auf den Kohlenhydrathaushalt der ganzen Pflanze und auf die Interaktion mit dem Pilz. Die Metabolitzusammensetzung von M. truncatula wird durch die Mykorrhiza Symbiose signifikant beeinflusst. Darüber hinaus werden durch Transkriptomanalysen die molekularen Grundlagen der AM Symbiose auf der Seite des Pilzes analysiert. Arbuskeln wurden mittels Laser Capture Mikrodissektion direkt aus mykorrhizierten Wurzeln isoliert. Über 3200 pilzliche Transkripte weisen in diesen Arbuskeln im Vergleich zu extraradikalen Geweben ein deutlich verändertes Expressionslevel auf. Unter diesen Transkripten sind auch sechs zuvor unbekannte Gene, die für potentielle Transporter codieren und mit großer Wahrscheinlichkeit eine Rolle im Nährstoffaustausch zwischen Pilz und Pflanze spielen. Während die Substrate von drei potentiellen MFS Transportern noch unbekannt sind, spielen zwei potentiellen Zuckertransporter möglicherweise eine Rolle im Transport von Kohlenhydraten in Richtung des Pilzes. Zusammengefasst bietet diese Arbeit neue Einsichten in Transportprozesse zwischen Pilz und Pflanze im Laufe der AM Symbiose. M. truncatula Transkript- und Metabolitlevel werden analysiert und die Transkriptomanalyse von R. irregularis liefert einen umfassenden Datensatz mit einer großen Menge an Informationen zu der noch unzureichend erforschten pilzlichen Seite der Symbiose für folgende Arbeiten.
6

Etude de peptides sécrétés par le champignon mycorhizien à arbuscules Rhizophagus irregularis / Study of the role of secreted peptides by the arbuscular mycorrhizal fungus Rhizophagus irregularis

Le Marquer, Morgane 31 October 2018 (has links)
La symbiose mycorhizienne à arbuscules (MA) est une association bénéfique établie entre les membres d'un ancien sous-phylum de champignons, les Gloméromycètes, et les racines de la majorité des plantes terrestres. Les champignons MA procurent de l'eau et des minéraux (azote et phosphore principalement) à leur plante hôte et obtiennent de cette dernière des molécules carbonées sous forme d'hexoses et de lipides. Des études récentes ont montré que certaines protéines sécrétées par les champignons MA peuvent être des régulateurs importants de l'association (Kloppholz et al., 2011 ; Tsuzuki et al., 2016). Notre objectif était d'identifier de nouvelles protéines fongiques contribuant à la mise en place de la symbiose. Des protéines prédites pour être préférentiellement sécrétées par le champignon MA Rhizophagus irregularis dans les racines ont été identifiées au début de ma thèse (Kamel et al., 2017). Certaines d'entre-elles présentaient une structure ressemblant aux précurseurs de phéromones sexuelles d'Ascomycètes. Ces protéines sont connues pour être maturées dans les voies de sécrétion en petits peptides qui sont ensuite sécrétés. Leur reconnaissance par un récepteur couplé à la protéine G (GPCR) aboutit à la fusion cellulaire de deux types sexuels opposés. Dans le cas de R. irregularis, seule la reproduction clonale a été décrite, mais des données génomiques récentes remettent en question son statut d'organisme asexué (Ropars et al., 2016). Une grande partie de ma thèse a été dédiée à la caractérisation fonctionnelle de ce type de peptides chez R. irregularis. Nous avons montré que deux peptides étaient effectivement produits et sécrétés par R. irregularis. L'utilisation de peptides synthétiques nous a permis de mettre en évidence que l'un d'eux stimulait la colonisation de M. truncatula mais était également perçu par le champignon lui-même, induisant la transcription de son propre gène précurseur et d'un GPCR. Ce peptide stimulateur de la symbiose est composé de seulement trois acides aminés et il peut être produit à partir de trois précurseurs protéiques. Par des approches de génétique inverse (HIGS et VIGS), nous avons confirmé l'importance de ces précurseurs dans l'établissement de la symbiose.[...] / Arbuscular Mycorrhizal (AM) symbiosis is a beneficial association established between members of an ancient subphylum of fungi, the Glomeromycotina, and the roots of the majority of terrestrial plants. AM fungi provide water and minerals (mainly nitrogen and phosphorus) to their host plant in exchange for organic carbon in the form of hexoses and lipids. Recent studies have shown that certain proteins secreted by AM fungi are important symbiosis regulators (Kloppholz et al., 2011, Tsuzuki et al., 2016). Our aim was to identify new fungal proteins involved in the establishment of symbiosis. Proteins predicted to be preferentially secreted by the AM fungus Rhizophagus irregularis in the roots were identified at the beginning of my thesis (Kamel et al., 2017). We noticed that some of them had a structure resembling the sex pheromone precursors of Ascomycota. These proteins are known to be processed in the secretory pathway into small peptides which are then secreted. Their recognition by a G protein-coupled receptor (GPCR) leads to cell fusion of two opposite sex types. In the case of R. irregularis, only clonal reproduction has been described. However, recent genomic data question its status as an asexual organism (Ropars et al., 2016). A large part of my thesis was dedicated to the functional characterization of this type of processed peptides in R. irregularis. We show that two of them are actually produced and secreted by R. irregularis. Treatments with synthetic forms of these peptides revealed that one of them stimulated the colonization of M. truncatula but was also perceived by the fungus itself, inducing the transcription of its own precursor gene and of a GPCR gene. This symbiosis-stimulating peptide is composed of only three amino acids and can be produced from three different protein precursors. Using reverse genetics (HIGS and VIGS), we confirmed the importance of these precursors in the symbiosis establishment. [...]
7

The Medicago truncatula sucrose transporter family : sugar transport from plant source leaves towards the arbuscular mycorrhizal fungus

Doidy, Joan 23 May 2012 (has links) (PDF)
In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide (MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal interactions in arbuscular mycorrhiza (AM), have not yet been investigated.With the recent completion of the M. truncatula genome sequencing as well as the release of transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades: MtSUT1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and MtSUT4-1 are H+/sucrose symporters and represent key members of the MtSUT family. Conservation of transport capacity between orthologous leguminous proteins, expression profiles and subcellular localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for remobilization of intracellular reserve.The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous SUTs in response to colonization by glomeromycotan fungi.In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices expression library suitable for yeast functional complementation and screening of symbiotic marker genes, similar to the approach that led to the identification of the first glomeromycotan hexose transporter (GpMST1), has been developed in this study. [...]
8

Spatiotemporal regulation of the arbuscular mycorrhiza symbiosis establishment / Régulation spatiotemporelle de l'établissement de la symbiose mycorhizienne à arbuscule

Guillotin, Bruno 30 September 2016 (has links)
La symbiose mycorhizienne à arbuscule est une interaction bénéfique entre les champignons du phylum Glomeromycota et près de 80% des espèces de plantes terrestres. Elle est caractérisée par un échange réciproque de nutriments dans lequel le champignon fournit des sels minéraux à la plante en échange de sucres issus de la photosynthèse. Cependant, cette "alimentation" du champignon au cours de la symbiose représente un coût carbone important pour la plante. Ainsi, les plantes doivent strictement maitriser le développement des champignons symbiotiques dans les racines. Ce contrôle est appelé autorégulation. Plusieurs protéines ont été démontrées comme étant importantes pour la régulation des différentes étapes de la colonisation : la stimulation de la croissance fongique dans la rhizosphère par les strigolactones, l'entrée dans les racines, la prolifération des hyphes au sein des racines et la formation des arbuscules. Dans ce travail, nous avons examiné plus en détail le rôle de deux de ces protéines connues pour être impliquées dans le processus de mycorhization, les facteurs de transcription NSP1 et NSP2 (Nodulation Signaling Pathway). Nous avons d'abord pu confirmer dans les racines de M. truncatula en conditions non-symbiotiques, l'implication directe de NSP1 dans la régulation de deux gènes de biosynthèse des strigolactones, DWARF27 (D27) et MORE AXILLARY GROWTH (MAX1). Ensuite, nous avons montré que NSP1, contrairement à NSP2, favorise l'entrée du champignon dans la racine, sans doute due à l'induction de la synthèse des strigolactones stimulant le champignon, via l'activation de D27 et de MAX1. Ensuite, au cours des étapes ultérieures de la mycorhization, nous avons montré que dans les tissus colonisés, NSP1 est absent et que l'induction de D27 et de MAX1 n'était plus NSP1 dépendante. À cette étape, l'expression de la protéine NSP1 est localisée dans les cellules justes en amont du front de colonisation fongique. Là, elle contrôle négativement la propagation des hyphes dans la racine et positivement la formation des arbuscules. En revanche, NSP2 est présente dans le tissu colonisé où elle favorise la propagation des hyphes et le développement des arbuscules, peut-être en interaction avec d'autres facteurs. Nous avons également montré chez M. truncatula que si les protéines NSP1 sont absentes des tissus colonisés, les transcrits de NSP1 sont présents. De façon inattendue, nous avons mis en évidence que l'ARN messager de NSP1 avait la capacité de protéger l'ARN messager de NSP2 contre sa dégradation par le microARN (miR171h), par une action de piégeage du miR171h, appelé effet mimicry. Ceci est la première démonstration qu'une molécule d'ARN codante peut être la cible mimétique d'un microARN. Dans notre contexte d'étude cette constatation révèle que les transcrits de NSP1 permettent une régulation positive de l'expression de NSP2, et met en lumière un niveau de complexité supplémentaire dans le rôle de ces deux facteurs de transcription dans la symbiose mycorhizienne. Enfin, dans la tomate, nous avons montré que Sl-NSP1 pourrait être directement ou indirectement régulée par une protéine AUX / IAA impliquée dans la réponse précoce à l'auxine, Sl-IAA27. Ce lien avec l'auxine nous fait présumer que cette AUX/AAI est un nouveau composant de la voie de signalisation du contrôle de la colonisation fongique dans la tomate, et nous proposons qu'il puisse avoir un rôle dans le contrôle de la biosynthèse des strigolactones via la régulation de Sl-NSP1. L'ensemble de ce travail fournit de nouvelles pièces du puzzle constituant la symbiose mycorhizienne et montre l'importance de l'analyse des régulations spatiotemporelles pour une meilleure compréhension de ces processus biologiques extrêmement complexes. / The arbuscular mycorrhiza (AM), a symbiosis between fungi from the phylum Glomeromycota and nearly 80% of terrestrial plant species. It is characterized by a two-way exchange in which the fungus provides mineral nutrients to the plant in exchange for carbohydrates. However this "feeding" of the fungus during the symbiotic process represents a significant carbon cost for the plant. To maintain a mutualistic interaction the two symbiotic partners have to strictly control the extent of fungal development in the roots. This control is called autoregulation. Several proteins have been found to be important for the regulation of the different mycorrhizal steps: the stimulation of fungal growth in the rhizosphere by the strigolactones, the fungal entrance in the roots, the hyphal proliferation in the roots and the arbuscule formation. In this work we examine in more detail the role of two of these proteins known to be involved in the mycorrhization process, the transcriptional factors NSP1 and NSP2 (Nodulation Signaling Pathway). We first confirm in M. truncatula roots the direct implication of NSP1 in the regulation of two strigolactone biosynthesis genes, DWARF27 (D27) and MAX1, during the asymbiotic conditions. Then, we show that NSP1, unlike NSP2, is a factor that promotes the fungal entries in the root, presumably due to its activation of D27 and MAX1 resulting in a stimulation of strigolactone synthesis and presymbiotic fungal growth. Next, during the later stages of mycorrhization, we highlight that in the colonized tissues NSP1 is absent and the induction of both D27 and MAX1 is not anymore NSP1 dependent. NSP1 protein is then localized in cells which are not yet colonized but are close to a colonization zone. There, it controls negatively the hyphal propagation in the root and positively the formation of arbuscules. In contrast, NSP2 is present in the colonized tissue where it promotes hyphal propagation and arbuscule development, perhaps by interacting with other proteins. We also show that if NSP1 proteins are absent of the colonized tissues, NSP1 transcripts are present. Unexpectedly, we unveil that in those colonized cells, NSP1 mRNA can protect, by a micro RNA (miR171h) decoy action called target mimicry, NSP2 mRNA against miR171h-mediated degradation. This is the first demonstration that a coding RNA molecule can be a target mimic for a microRNA. In our context this finding reveals a positive regulation of NSP2 expression by NSP1 transcripts and brings to light an additional layer of complexity in the mycorrhizal dual role of these two transcription factors. Finally, in tomato, we highlight that SlNSP1 could be directly or indirectly regulated by the AUX/IAA protein, SlIAA27. As a link with auxin we presume that this AUX/IAA protein is a new component of the signaling pathway controlling AM fungal colonization in tomato, and we propose that it controls strigolactone biosynthesis via the regulation of SlNSP1. Overall our work provides new pieces of the mycorrhizal puzzle and shows how important it is to perform spatiotemporal investigations for a better understanding of highly integrated and complex biological processes.
9

Kombinované mikrobiální ošetření v hydroponickém pěstování rajčete a okurky: vliv na výnosové parametry a obsah antioxidantů v plodech / Combined mocrobial treatmens in hydroponic cultivation of tomato and cucumber the effect on yield parameters and antioxidant contens in fruits

Pikorová, Markéta January 2014 (has links)
Some microorganisms are known to form mutualistic symbiosis with plant roots and by their impact they can improve some plant parameters. These symbiotic microorganisms, which are able to improve some plant parameters, include especially mycorrhizal fungi, plant growth promoting bacteria and some saprotrophic mycoparasitical fungi. Mechanisms of changes of these parameters, as influenced by symbiotic microorganisms, are known only in part and nowadays are being actively researched. Aims of this work were to find out if selected microbial treatments influence selected growth, physiological and yield parameters of plants and contents of selected substances in fruits. Within this work were made three pot greenhouse experiments (experiments 1, 2 and 3) and three pilot greenhouse experiments (experiments 4, 5 and 6), performed on tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) plants. Plants were grown in hydroponics using a carrier of rockwool and they were watered by nutrient solution. As microbial treatments for plants in experiments have been used a mixture of arbuscular mycorrhizal fungi (AM), mixture of plant growth promoting bacteria (PGPB), saprotrophic mycoparasitical fungus Trichoderma harzianum (Th) and various mutual combinations of these treatments. There have been observed...

Page generated in 0.1085 seconds