• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatic and biological studies on the Arabidopsis enzyme DWARF27 and its homolog DWARF27-like 1

Abuauf, Haneen W. 10 1900 (has links)
Strigolactones (SLs) are a novel class of phytohormones that shape shoot and root architecture. Carlactone, the precursor of SLs, is synthesized from all-trans-β-carotene by the sequential action of three enzymes: the all-trans/9-cis-β-carotene isomerase DWARF27 (D27) that reversibly converts all-trans-β-carotene into 9-cis-β-carotene (shown only for the rice D27) and the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8). Genomes of higher plants encode two D27 homologs (D27-like 1 and D27-like 2) with unknown function. Rice and Arabidopsis d27 mutants show less pronounced high tillering/more branching phenotype, compared to ccd7 or ccd8 mutants. This difference might be the result of functional redundancy caused by the presence of D27-like 1 and D27-like 2. In this study, we investigated the enzymatic and biological activity of the Arabidopsis D27 and the rice and Arabidopsis D27-like 1, using both in vivo and in vitro studies. Our results show that AtD27 is a true ortholog of the rice D27. Like SLs, the biosynthesis of ABA requires an all-trans/9-cis-isomerization reaction. However, the enzyme postulated for this activity is still elusive. Our enzymatic activity tests exclude a direct involvement of AtD27 in ABA biosynthesis. Nevertheless, Atd27 mutant shows low level of ABA, and analysis of AtD27 promoter
2

Vers une meilleure compréhension du mode d’action des strigolactones et de leur interaction avec les autres hormones du développement / Towards a better understanding of strigolactone mode of action of and their interaction with other plant hormones

Saint Germain, Alexandre de 30 November 2012 (has links)
L'étude de la ramification chez le pois, à partir des mutants hyper-ramifiés ramosus (rms) a permis de mettre en évidence l'existence d'une nouvelle famille d'hormones végétales : les strigolactones, inhibant la ramification des plantes à graines. La découverte de cette hormone végétale ouvre de nouvelles pistes de recherche sur la biosynthèse et la perception de cette nouvelle hormone. Nous avons montré le rôle du gène PsBRC1, codant un facteur de transcription de type TCP et homologue du gène TEOSINTE BRANCHED1 du maïs, dans la voie de signalisation des strigolactones. L’étude de ce gène nous a permis d'avoir une meilleure compréhension de l’interaction entre strigolactones et cytokinines dans le contrôle de la ramification, de la dynamique de la levée de dormance des bourgeons axillaires, et d'effectuer les premières études de relations structure-activité des strigolactones sur l’inhibition de la ramification chez le pois.Nous avons étudié et caractérisé d'autres éléments dans la voie de signalisation. Chez le pois, deux mutants, autres que Psbrc1, ne répondent pas à l’application de strigolactones, rms3 et rms4. Le gène RMS4 code pour une protéine à boîte F. Nous nous sommes focalisés ici sur le mutant hyper-ramifié rms3. Nous avons montré que RMS3 est l'homologue du gène D14 du riz, codant pour une protéine de la superfamille des α-β/hydrolases. Ces protéines peuvent avoir une activité enzymatique et ainsi pourraient modifier les strigolactones en un composé actif. Le récepteur des gibbérellines GID1 appartient aussi à cette famille, RMS3 est donc un bon candidat pour être le récepteur des strigolactones. Nous avons utilisé une strigolactone radiomarquée afin d’étudier le métabolisme de l'hormone. Nous avons découvert que la strigolactone synthétique, 3H-GR24 est clivée en un composé inconnu au contact des racines, indépendamment de l'activité de la protéine RMS3. Ce composé de structure inconnue se retrouve aussi dans la sève du xylème alors que 3H-GR24 y est absent.Outre un phénotype hyperbranché les mutants rms présentent une diminution de la taille de leurs entre-nœuds, qui n'est pas due à l’augmentation de la ramification. Nous avons étudié l'origine du nanisme des mutants déficients en strigolactones et affectés dans la réponse à l’hormone. Des approches génétiques et moléculaires ont été utilisées pour tester une interaction possible entre les strigolactones et les gibbérellines. Nous avons montré que les strigolactones régulaient l’élongation des entre-nœuds indépendamment des gibbérellines.Le pois est un excellent modèle en génétique et en physiologie. Avec le développement de nouvelles techniques à l'INRA (TILLING; UNIGENE : ensemble de plus de 40000 séquences exprimées de pois), nous avons pu identifier de nouveaux gènes de biosynthèse des strigolactones chez le pois et obtenir plusieurs nouveaux mutants de pois. Ces mutants seront essentiels pour les futures études du laboratoire et pourront permettre d'identifier de nouveaux intermédiaires dans la biosynthèse et le métabolisme des strigolactones. / The study of shoot branching in pea, using the high branching ramosus (rms) mutants has highlighted the existence of a new family of plant hormones: the strigolactones, inhibiting shoot branching in seed plants. The discovery of this novel plant hormone opens novel research areas in the deciphering of strigolactone biosynthesis and strigolactone perception. We have shown the role of the pea TCP transcription factor, PsBRC1, the homolog of the maize TEOSINTE BRANCHED (TB1) in strigolactone signaling. The PsBRC1 gene was shown to have a role in integrating strigolactone and cytokinin pathways, and allowed to have a better understanding of the dynamics of bud outgrowth, and to perform the first strigolactone Structure-Activity Relationship studies for branching inhibition in pea. We investigated and characterized other elements in the signaling pathway, including the strigolactone receptor. In pea, two mutants, other than Psbrc1, do not respond to the application of strigolactones, rms3 and rms4. The RMS4 gene encodes an F-BOX protein and here we focused on the high branching rms3 pea mutant. We have shown that RMS3 is the homolog of the rice D14 gene encoding a protein of the α-β/hydrolase superfamily. Consequently RMS3 may have an enzymatic activity to modify strigolactone into an active compound. The gibberellin receptor GID1 also belongs to this family, therefore RMS3 is also a good candidate for the strigolactone receptor. We used a radiolabeled synthetic strigolactone, 3H-GR24, to investigate the metabolism of the hormone. We discovered that the synthetic strigolactone, 3H-GR24 is cleaved in an unknown compound in the root media independently of RMS3 activity, compound which is also found in the xylem sap in contrast to 3H-GR24. The rms mutants exhibit not only a high branching phenotype but also a reduced height which is not due to this high branching. We investigated the origin of the dwarfism of strigolactone-deficient and response mutants in pea. Genetic and molecular approaches have been used to test a possible interaction between strigolactones and gibberellins. We have shown that strigolactones regulate stem elongation independently of gibberellin. Pea is a powerful model plant for genetics and physiology. With the development of new facilities at INRA (TILLING; UNIGENE set of more than 40000 expressed sequences), we were able to identify new biosynthesis genes in pea and to obtain several novel pea mutants. These mutants will be essential for future studies of the laboratory in particular to identify new intermediates in strigolactone biosynthesis and metabolism.
3

INTERACTIONS BETWEEN AUXIN AND STRIGOLACTONE IN THE CONTROL OF ARABIDOPSIS SHOOT BRANCHING

Alice Hayward Unknown Date (has links)
Diversity in plant architecture is largely generated by the post-embryonic regulation of meristem initiation and activity. In a phenomenon known as apical dominance, the active growth of the shoot apical meristem (SAM) exerts significant inhibitory force on the outgrowth of axillary meristems (AMs) into shoot branches. The degree of branching in plants is a determinant of yield in many crop species and is carefully regulated to ensure that plants only branch at specific stages of development or in response to their environment. Apical dominance has been attributed to the action of the hormone auxin, produced in SAM tissues and transported downwards. A second hormone, cytokinin, acts antagonistically to auxin to promote branching. Nonetheless, the exact mechanism by which these hormones operate is still being elucidated and continued research suggested that novel signals are involved. The recent discovery that strigolactones, previously implicated in parasitic weed germination and mycorrhizal associations, are branching inhibitors supports the existence of additional signals controlling branching in plants. In garden pea (Pisum sativum) strigolactones are synthesised by the coordinated action of the carotenoid cleavage dioxygenase (CCD) family enzymes, RMS1 (RAMOSUS1) and RMS5. These are encoded by MAX4 (MORE AXILLARY GROWTH4) and MAX3 in Arabidopsis thaliana respectively. Mutants for MAX genes have increased amounts of auxin travelling in the polar auxin transport stream (PATS) of inflorescence stems but exhibit increased branching that is insensitive to inhibition by this auxin. Two hypotheses for the action of strigolactones have been presented. The first is that strigolactones modulate the levels of auxin transport proteins, preventing axillary buds from establishing an active auxin transport flow into the primary stem, which inhibits growth. The second is that strigolactones act downstream of auxin signalling to inhibit the action of outgrowth-promoters. Consistent with this latter hypothesis, in pea, rice (Oryza sativa) and petunia (Petunia hybrida), the expression of RMS1/MAX4 orthologues is auxin regulated. These genes are also regulated by feedback signalling in strigolactone pathway mutants and this is proposed to involve an additional novel signal. In Arabidopsis, however, research showed that MAX4 is not regulated by feedback or auxin in the shoot and placed doubt on the importance of this regulation for branching control. The strigolactone biosynthetic pathway offers a novel target for the manipulation of plant architecture and yield while controlling the germination of parasitic weed species that are detrimental to agriculture. Therefore, a greater understanding of the pathway and its regulators is beneficial. The majority of the research in this thesis pre-dates the discovery of strigolactones as the RMS/MAX-derived branching inhibitor, yet aimed to clarify the evolutionary conservation and functional importance of the regulation of strigolactone biosynthetic genes by auxin and feedback signalling in Arabidopsis. Quantitative real-time PCR analysis demonstrated that MAX3 and MAX4 are co-ordinately and systemically regulated by auxin and by feedback throughout development. Both auxin and feedback regulation required the AXR1/TIR1 auxin response pathway, which targets Aux/IAA transcriptional repressors for proteasomal degradation. In particular, correct degradation of the Aux/IAA protein IAA12 appears to be necessary for optimal MAX3 and MAX4 expression. Moreover this regulation affects strigolactone-dependent branching inhibition. Therefore it is proposed that auxin inhibits branching, in part, by positively regulating strigolactone synthesis. As feedback requires AXR1, this also suggests that increased auxin level and/or signalling in the PATS in conditions of reduced strigolactone signalling mediates feedback regulation of the strigolactone pathway. Consistent with this, microarray analysis revealed that in addition to the inflorescence, max mutants have increased global auxin-responsive gene expression associated with the PATS in the vegetative stage. The pea RMS1 gene was the first strigolactone pathway gene demonstrated to be auxin-regulated. Sequencing of the RMS1 promoter and comparative bioinformatic analysis with promoters of other strigolactone synthesis genes revealed a number of conserved, putative regulatory cis-elements that could mediate this regulation and cross-talk with additional branching cues. However a 2.5 kb fragment of the RMS1 promoter was not sufficient to drive transcriptional and translational fusions with GFP and the RMS1 coding region in Arabidopsis. The RMS1 coding region driven by the CAMV 35S promoter complemented the max4 mutant but did not affect branching induced by auxin-depleting treatments. Grafting studies with axr1 and iaa12 mutants, and decapitation and auxin-transport inhibition in max4 mutants, demonstrated that auxin signalling has a function in branching control independent from the regulation of strigolactone synthesis genes. Overall, data obtained herein was incorporated into current models for the interaction of the strigolactone pathway with auxin and cytokinin in the control of shoot branching. It is suggested that both strigolactone and auxin have the capacity to regulate the levels or distribution of each other in interlocking feedback loop that intersects with additional developmental, physiological and environmental cues for the precise control of axillary branching in plants.
4

INTERACTIONS BETWEEN AUXIN AND STRIGOLACTONE IN THE CONTROL OF ARABIDOPSIS SHOOT BRANCHING

Alice Hayward Unknown Date (has links)
Diversity in plant architecture is largely generated by the post-embryonic regulation of meristem initiation and activity. In a phenomenon known as apical dominance, the active growth of the shoot apical meristem (SAM) exerts significant inhibitory force on the outgrowth of axillary meristems (AMs) into shoot branches. The degree of branching in plants is a determinant of yield in many crop species and is carefully regulated to ensure that plants only branch at specific stages of development or in response to their environment. Apical dominance has been attributed to the action of the hormone auxin, produced in SAM tissues and transported downwards. A second hormone, cytokinin, acts antagonistically to auxin to promote branching. Nonetheless, the exact mechanism by which these hormones operate is still being elucidated and continued research suggested that novel signals are involved. The recent discovery that strigolactones, previously implicated in parasitic weed germination and mycorrhizal associations, are branching inhibitors supports the existence of additional signals controlling branching in plants. In garden pea (Pisum sativum) strigolactones are synthesised by the coordinated action of the carotenoid cleavage dioxygenase (CCD) family enzymes, RMS1 (RAMOSUS1) and RMS5. These are encoded by MAX4 (MORE AXILLARY GROWTH4) and MAX3 in Arabidopsis thaliana respectively. Mutants for MAX genes have increased amounts of auxin travelling in the polar auxin transport stream (PATS) of inflorescence stems but exhibit increased branching that is insensitive to inhibition by this auxin. Two hypotheses for the action of strigolactones have been presented. The first is that strigolactones modulate the levels of auxin transport proteins, preventing axillary buds from establishing an active auxin transport flow into the primary stem, which inhibits growth. The second is that strigolactones act downstream of auxin signalling to inhibit the action of outgrowth-promoters. Consistent with this latter hypothesis, in pea, rice (Oryza sativa) and petunia (Petunia hybrida), the expression of RMS1/MAX4 orthologues is auxin regulated. These genes are also regulated by feedback signalling in strigolactone pathway mutants and this is proposed to involve an additional novel signal. In Arabidopsis, however, research showed that MAX4 is not regulated by feedback or auxin in the shoot and placed doubt on the importance of this regulation for branching control. The strigolactone biosynthetic pathway offers a novel target for the manipulation of plant architecture and yield while controlling the germination of parasitic weed species that are detrimental to agriculture. Therefore, a greater understanding of the pathway and its regulators is beneficial. The majority of the research in this thesis pre-dates the discovery of strigolactones as the RMS/MAX-derived branching inhibitor, yet aimed to clarify the evolutionary conservation and functional importance of the regulation of strigolactone biosynthetic genes by auxin and feedback signalling in Arabidopsis. Quantitative real-time PCR analysis demonstrated that MAX3 and MAX4 are co-ordinately and systemically regulated by auxin and by feedback throughout development. Both auxin and feedback regulation required the AXR1/TIR1 auxin response pathway, which targets Aux/IAA transcriptional repressors for proteasomal degradation. In particular, correct degradation of the Aux/IAA protein IAA12 appears to be necessary for optimal MAX3 and MAX4 expression. Moreover this regulation affects strigolactone-dependent branching inhibition. Therefore it is proposed that auxin inhibits branching, in part, by positively regulating strigolactone synthesis. As feedback requires AXR1, this also suggests that increased auxin level and/or signalling in the PATS in conditions of reduced strigolactone signalling mediates feedback regulation of the strigolactone pathway. Consistent with this, microarray analysis revealed that in addition to the inflorescence, max mutants have increased global auxin-responsive gene expression associated with the PATS in the vegetative stage. The pea RMS1 gene was the first strigolactone pathway gene demonstrated to be auxin-regulated. Sequencing of the RMS1 promoter and comparative bioinformatic analysis with promoters of other strigolactone synthesis genes revealed a number of conserved, putative regulatory cis-elements that could mediate this regulation and cross-talk with additional branching cues. However a 2.5 kb fragment of the RMS1 promoter was not sufficient to drive transcriptional and translational fusions with GFP and the RMS1 coding region in Arabidopsis. The RMS1 coding region driven by the CAMV 35S promoter complemented the max4 mutant but did not affect branching induced by auxin-depleting treatments. Grafting studies with axr1 and iaa12 mutants, and decapitation and auxin-transport inhibition in max4 mutants, demonstrated that auxin signalling has a function in branching control independent from the regulation of strigolactone synthesis genes. Overall, data obtained herein was incorporated into current models for the interaction of the strigolactone pathway with auxin and cytokinin in the control of shoot branching. It is suggested that both strigolactone and auxin have the capacity to regulate the levels or distribution of each other in interlocking feedback loop that intersects with additional developmental, physiological and environmental cues for the precise control of axillary branching in plants.
5

An investigation into the effects of smoke-water and GR24 on the growth of nicotiana benthamiana seedlings

Kotze, Liske Marinate 12 1900 (has links)
Thesis (MSc (Plant Biotechnology))--University of Stellenboscg, 2010. / Includes bibliography. / Title page: Dept. of Genetics, Faculty of Natural Sciences. / ENGLISH ABSTRACT: Novel plant growth regulating substances (PGRs) are emerging as a useful tool to investigate important growth traits in plants. This study reports on growth promotion pathways leading to enhanced biomass accumulation in two PGRs sharing a common α, β-unsaturated furanone moiety. Growth promotion by GR24, a synthetic strigolactone, and an aqueous smoke solution (including the active compound, KAR1) in physiologically normal seedlings was characterized by enhanced biomass accumulation and higher seedling vigour. Root architecture (lateral root number and root length) and shoot size (fresh and dry shoot weight and leaf area) were also dramatically improved following GR24 and smoke/KAR1 treatment. Despite these apparent similarities, parallel transcript and phytohormone profiling identified only a limited number of overlapping entities. Four common up-regulated and nineteen down-regulated mRNA transcripts were identified; whilst amongst the phytohormones that were analyzed, only ABA and JA levels were commonly increased between the treatments. This suggests that, whilst the phenotypic end response(s) was similar, it was attained via distinct pathways. The limited number of co-expressed transcripts between these treatments, as well as repressed biomass accumulation when combining GR24 and aqueous smoke in a single treatment suggests, however, that a certain degree of cross-talk in either signal perception/transduction and/or biomass regulation could not be ruled out. In light of the structural similarity between the strigolactone and KAR1 molecules and the degree of redundancy between these treatments, it is possible that these two molecules might share a common receptor/perception pathway. Two silencing vectors were constructed, specifically aimed at silencing Nicotiana benthamiana genes MAX4 and MAX2 which are known to function in the strigolactone biosynthesis pathway and signal transduction pathway, respectively. Transgenes designed to express single- or double-stranded-self- complementary hairpin RNA have a post translational gene silencing effect. The pHELLSGATE2 plasmid a binary vector that incorporates GATEWAY cloning technology which makes use of λ-phage-based site specific recombination, rather than restriction endonucleases and ligation, was used to construct these gene silencing vectors. These constructs can in future be used to produce Nicotiana plants with impaired strigolactone production and perception abilities and may provide evidence as to whether the signaling cascade of KAR1 and strigolactone share a degree of crosstalk. / AFRIKAANSE OPSOMMING: Aanvraag na plantmateriaal is besig om toe te neem, hetsy vir gebruik as mens- en diervoeding of vir die produksie van biobrandstof. Om aan hierdie behoefte te voldoen, word verskeie pogings geloods wat fokus op die optimisering van plantproduksiestelsels. Om plantgroei te stimuleer/verbeter, is ’n ingewikkelde proses en is oor die algemeen moeilik om te begryp. Die produksie van plantbiomassa is nou gekoppel aan primêre metabolisme en enige verandering in hierdie biochemiese padweë kan lei tot ongewenste newe-effekte. Gevolglik word primêre metabolisme streng beheer deur reguleringsmeganismes. ’n Nuttige alternatief tot metaboliese wysiging is deur bio-aktiewe agente te karakteriseer op grond van die veranderinge aan plantgroei wat waargeneem word. Nuwe stowwe met biologiese aktiwiteite in plantontwikkeling word elke dag ontdek en speel ’n belangrike rol in die studie van plantgroei en -ontwikkeling. Hier word verslag gelewer van twee plantgroei-stimulerende stowwe wat albei lei tot die aktivering van verbeterde plantbiomassa-akkumulasie-padweë. Swaarder plantjies met ’n verhoogde oorlewingsvermoё is waargeneem in fisiologies normale saailinge wat met ’n sintetiese strigolaktoon (GR24) of met rookwater (met aktiewe bestanddeel, KAR1) behandel is. Behandeling met hierdie twee stowwe het gelei tot soortgelyke plantbiomassa-akkummulasie- vermoё. Hierdie twee stowwe (GR24 en KAR1) deel ’n ooreenstemmende molekulêre struktuur in die vorm van ’n α, β-onversadigde furanone-moieteit. Ten spyte van die groeiverbeteringsooreenkomste, gesien in saalinge behandel met GR24 en rook/KAR1, dui verskille in transkripsie- en hormoonprofiel op twee verskillende groeistimuleringspadweë. Saailinge wat gelyktydig behandel is met ’n kombinasie van die twee stowwe het egter ’n stremming in groei getoon in vergelyking met die kontroleplantjies. Dit is egter waargeneem dat daar wel ’n mate van oorvleueling in die aantal transkripte was tussen die drie behandelinge, wat daarop dui dat die groei-regulerende padweë nie in totale onafhanklikheid funksioneer nie, maar wel sekere stappe deel. Na aanleiding van die strukturele ooreenkomste tussen die strigolaktoon (GR24) en KAR1 molekules en die mate van molekulêre kommunikasieoorvleueling word gepostuleer dat hierdie twee molekules dalk aan dieselfde reseptormodule kan bind of stimuleer. Om hierdie rede is twee geendempingsvektors geskep wat daarop gemik is om twee gene, MAX2 en MAX4, in Nicotiana benthamiana uit te doof. Die MAX2 geenproduk is betrokke in die kommunikasie en waarneming van die strigolaktoon en die MAX4 geenproduk is betrokke by die vervaardiging van die hormoon. Oordraagbare geen-kostruksies wat daarop gemik is om enkel- en dubbelstring selfkomplimentêre haarnaald-RNS te vorm, besit die vermoë om getranskribeerde geenprodukte te vernietig. Die pHELLSGATE2 plasmied is ’n binêre vektor wat GATEWAY kloneringstegnologie gebruik, waar λ-faag gebaseerde setelspesifieke rekombinasie eerder as die tradisionele ligeringsreaksie gebruik word. Hierdie konstrukte kan gebruik word om transgeniese plantjies te skep waar die vermoë om strigolaktoon te maak of waar te neem, verloor of onderdruk is. Hierdie transgeniese plantjies kan gebruik word om te bepaal of die plantgroei-stimulerende vermoë van GR24 en rook/KAR1 wel dieselfde padweë gebruik.
6

The role of auxin transport in the control of shoot branching

van Rongen, Martin January 2018 (has links)
Branching is a highly plastic trait, enabling plants to adapt their growth form in response to environmental stimuli. In flowering plants, shoot branching is regulated through the activity of axillary buds, which grow into branches. Several classes of plant hormones have been shown to play pivotal roles in regulating bud outgrowth. Auxin derived from the primary shoot apex and active branches inhibits bud outgrowth, whereas cytokinin promotes it. Strigolactones also inhibit bud outgrowth, by changing properties of the auxin transport network, increasing the competition between buds. This occurs by modulating access to the polar auxin transport stream (PATS) in the main stem. The PATS provides directional, long distance transport of auxin down the stem, involving basal localisation of the auxin transporter PIN-FORMED1 (PIN1). Buds need to export their auxin across the stem towards the PATS in order to activate, but since PIN1 is mainly expressed in narrow files of cells associated with the stem vasculature, PIN1 itself it is unlikely to facilitate this connectivity. This thesis re-examines the role of auxin transport in the stem, showing that, besides the PIN1-mediated PATS, other auxin transport proteins constitute a more widespread and less polar auxin transport stream, allowing auxin exchange between the PATS and surrounding tissues. Disruption of this transport stream is shown to reduce bud-bud communication and to partially rescue the increased branching observed in strigolactone mutants. Furthermore, it is shown that distinct classes of auxin transport proteins within this stream can differentially affect bud outgrowth mediated by BRANCHED1 (BRC1). BRC1 is a transcription factor proposed to determine bud activation potential. Taken together, the data presented here provide a more comprehensive understanding of the shoot auxin transport network and its role in shoot branching regulation.
7

Involvement of auxin in the arbuscular mycorrhizal symbiosis in tomato / Implication de l'auxine dans la symbiose endomycorhizienne à arbuscules

Etemadi-Shalamzari, Mohammad 17 November 2014 (has links)
La plupart des espèces végétales terrestres vivent en symbiose avec les champignons mycorhiziens à arbuscules (MA). Il s’agit d’une symbiose très ancienne datant de plus de 400 millions d’années. Les champignons MA sont des champignons du sol qui appartiennent aux Gloméromycètes. Ils sont présents dans la plupart des écosystèmes terrestres. Ainsi, ils peuvent être considérés comme une composante intégrale des racines des plantes. Ils forment dans les cellules racinaires corticales des structures fonctionnelles essentielles appelées arbuscules où ils apportent à la plante des minéraux nutritifs en échange de sucres. L’auxine est une phytohormone impliquée dans de nombreux processus de développement des plantes, y compris la dominance apicale, les tropismes, la structuration vasculaire et la formation de racines latérales. Le principal objectif de notre travail était d’étudier de manière approfondie le rôle de l’auxine dans le processus de développement des mycorhizes. On sait déjà que la symbiose MA stimule la formation de racines latérales dans les plantes hôtes, ce qui pourrait être due à une modification du métabolisme de l’auxine, de son transport ou de sa perception. Les microARNs (miARNs) sont des molécules d’ARN non codantes de ~ 21 nucléotides capables de réprimer l’expression de gènes en ciblant et clivant spécifiquement leur ARNm correspondant. Plusieurs miARNs interagissent avec la signalisation de l’auxine et parmi eux miR393 qui cible les récepteurs à l’auxine. Nous avons étudié le rôle de miR393 dans la colonisation mycorhizienne. Nous mettons en évidence que chez Solanum lycopersicum (Solanacées), Medicago truncatula (Fabaceae) et Oryza sativa (Poaceae), l’expression des précurseurs de miR393 diminue lors de la mycorhization. En outre nous montrons que DR5-GUS, un gène rapporteur de réponse à l’auxine, est préférentiellement exprimé dans les cellules de la racine contenant les arbuscules. En sur-exprimant miR393 dans les racines et donc en régulant négativement l’expression des gènes de récepteurs à l’auxine, nous montrons également que les arbuscules ne se développent pas normalement. En tant que composantes des complexes récepteurs d’auxine, les protéines Aux/IAA jouent un rôle majeur dans la voie de signalisation de l’auxine en réprimant l’activité des facteurs de transcription de type ARF. Nous avons vérifié dans des racines de tomate mycorhizées l’expression de 25 gènes AUX/IAA. Nous nous sommes concentrés sur IAA27 dont l’expression est induite lors des premiers stades de la symbiose MA. Nous observons qu’une répression par ARNi de l’expression de IAA27 dans des plants de tomate conduit à une forte diminution de la colonisation MA et du nombre des arbuscules. Puis nous montrons par des approches différentes que la régulation positive de la mycorhization par IAA27 est liée à la biosynthèse des strigolactones. Globalement, ces résultats appuient fortement l’hypothèse selon laquelle la signalisation de l’auxine joue un rôle important aussi bien dans le stade précoce de la mycorhization que dans la formation des arbuscules. / Most land plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. This is a very ancient symbiosis dating back to 450 million years. AM fungi are soil fungi that belong to the Glomeromycota. They are present in most terrestrial ecosystems. Thus they can be considered as an integral root component of plants. They form essential functional structures called arbuscules in root cortical cells at which mineral nutrients are released to the plant in exchange of sugars. The phytohormone auxin is involved in many developmental processes in plants, including apical dominance, tropisms, vascular patterning and lateral root formation. The main objective of our work was to investigate further the role of auxin in the mycorrhizal developmental process. We already know that AM symbiosis stimulates the lateral root formation in host plants, which could be due to modification of auxin metabolism, transport or perception. The microRNAs (miRNAs) are ~21-nucleotides noncoding RNAs that target corresponding mRNA transcripts for cleavage and transcriptional repression. Several miRNAs interact with auxin signaling and among them miR393 that targets auxin receptors. We investigated the role of miR393 in AM root colonization. In Solanum lycopersicum (Solanaceae), Medicago truncatula (Fabaceae) and Oryza sativa (Poaceae), expression of the precursors of the miR393 was down-regulated during mycorrhization. In addition DR5-GUS, a reporter for auxin response, was found to be preferentially expressed in root cells containing arbuscules. By over-expressing miR393 in roots and therefore down-regulating auxin receptor genes, arbuscules could not develop normally. As components of auxin receptor complexes, Aux/IAA proteins play a major role in auxin signaling pathway by repressing the activity of ARF type transcription factors. We checked the expression of 25 AUX/IAA genes in AM roots. Among them, we focused on IAA27 that was significantly up-regulated during the early stages of AM symbiosis. IAA27 down-regulation in plants led to a strong decrease of AM colonization and arbuscule abundance. We showed by different approaches that the positive regulation of mycorrhization by IAA27 was linked to strigolactone biosynthesis. Overall these results strongly support the hypothesis that auxin signaling plays an important role both in the early stage of mycorrhization and in the arbuscule formation.
8

Exploring the genetic basis of germination specificity in the parasitic plants Orobanche cernua and O. cumana

Larose, Hailey Lee Ann 17 April 2018 (has links)
Seeds of the root parasitic plants of the genus Orobanche germinate specifically in response to host-derived germination signals, which enables parasites to detect and attack preferred hosts. The best characterized class of germination stimulants is the strigolactones (SLs), although some species respond to non-SL compounds, such as dehydrocostus lactone (DCL). Recent work indicates that SLs are perceived by members of the KARRIKIN-INSENSITIVE2 (KAI2) gene family, and suggests that within parasitic Orobanchaceae the KAI2 genes have undergone duplication and specialization. The "diverged" clade of these genes, termed KAI2d, has been shown to bind SL germination stimulants in model system assays, but the precise role for KAI2d in regulating germination specificity in a parasitic plant has not been demonstrated. To address this issue, we used genetic and genomic approaches involving two closely related species, Orobanche cernua and O. cumana, which differ primarily in host range and stimulant preference. Orobanche cernua parasitizes tomato (and other Solanaceous crops) and responds to orobanchol, the major SL from tomato roots, whereas O. cumana specifically parasitizes sunflower and responds to DCL. Crosses between O. cernua and O. cumana produced hybrid populations that segregate for stimulant specificity, creating a tractable genetic system. Orobanche cernua contains four KAI2d genes (numbered OrceKAI2d1-4), while O. cumana contains six genes (OrcuKAI2d1-6). The DNA from 94 F2 hybrids was genotyped to identify the KAI2d gene composition and these were correlated with germination phenotype. The pattern of segregation indicated that the KAI2d genes are linked, but pointed to OrceKAI2d2 as a likely orobanchol receptor. Response to DCL was associated with inheritance of all O. cumana KAI2d genes together. Each KAI2d gene was expressed in the Arabidopsis thaliana kai2 mutant background and tested for ability to recover the mutant phenotype when exposed to SLs (including orobanchol, 5-deoxystrigol and GR24) or DCL. One O. cernua gene, OrceKAI2d2, responded to all SLs, but not DCL in this system. No DCL-specific KAI2 genes were identified. In summary, we have identified the likely SL receptor in O. cernua, and show evidence that the DCL receptor is either not a KAI2d protein, or uses KAI2d in combination with other signaling pathway components. / Ph. D.
9

Analysis of the effects of the plant growth promoting substances GR24 and smoke water on abiotically stressed Nicotiana benthamiana seedlings

Steenkamp, Letitia Elizabeth 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Almost all processes during the life of a plant are affected by the environment. Changes in phytohormone, metabolite and protein levels follow in response to changes in the environment. Plant growth promoting substances can stimulate changes at these levels to facilitate increased plant growth and yields above what the plant would normally establish. In this study, the effects of two growth promoting substances, smoke water (SW) derived from bubbling smoke from the burning of plant material through water, and a synthetic strigolactone analogue, GR24, on plant growth and architecture, as well as the proteome and metabalome of salt stressed Nicotiana benthamiana seedlings were investigated. Physiological studies were conducted to identify the effects of the growth substances on salt stressed seedlings in a tissue culture system. Under non-stress conditions, SW treatment increased seedling fresh mass, root length and leaf area. Under salt stress conditions (100 mM and 150 mM NaCl), SW increased fresh mass, root length, leaf number and lateral root number significantly. Under non-stress conditions, GR24-treated seedlings showed increased fresh mass, leaf number and area and root length. When GR24-treated seedlings were placed under salt stress, the seedlings showed significant increases in fresh mass, leaf number and lateral root number, but only marginal increases in root length and leaf area. Despite these similarities, slight differences were observed in the metabolomes and proteomes of smoke water and GR24-treated seedlings, both with and without the addition of salt stress. Relatively few of the differentially expressed proteins could be identified with the instruments available. Changes in the metabolome indicated that photoassimilation and photosynthesis could be affected in response to smoke water and GR24 treatment. Our results suggest that smoke water and GR24 both promote growth under salt stress conditions in seedlings and we furthermore conclude that, although there are distinct overlaps between treatments, this is accomplished via slightly different mechanisms. / AFRIKAANSE OPSOMMING: Gedurende ‘n plant se lewe word omtrent alle prosesse deur die omgewing geaffekteer. Veranderinge in die omgewing word gevolg deur veranderinge in hormoon, metaboliet en protein vlakke. Plant groei stimulante affekteer hierdie vlakke om plant groei en -opbrengs na bo normalle vlakke te verhoog. In hierdie studie word die effek van twee groei stimulante, rook water verkry deur rook van plant materiaal deur water te borrel en ‘n sintetiese strigolaktoon, GR24, ondersoek op ‘n morfologiese, metaboliese en ‘n proteomiese vlak in Nicotiana benthamiana saailinge. ’n Studie is onderneem om die veranderinge as gevolg van die onderskeie groei stimulante te ondersoek in ‘n weefsel kultuur sisteem. Rook water het onder normale groei omstandighede vars en droeë massa, blaar aantal asook wortel en blaar lengte verhoog. Rook water het na sout behandeling (100 en 150 mM NaCl) steeds vars massa, wortel lengte, blaai aantal en laterale wortel aantal beduidend verhoog in vergelyking met die sout stres kontrole. Behandeling met GR24 het ook vars massa, wortel lengte, blaar aantal en grootte verhoog en onder sout stres met GR24 is ‘n beduidende vergroting opgemerk in vars massa, blaar grootte en laterale wortel aantal. Ongeag van die veranderinge in groei is klein verskille opgemerk in die metaboliet en protein studies. Net ‘n paar proteine kon positief geidentifiseer word met die apparaat beskikbaar. Verandering in die metaboloom wys na veranderinge in fotoassimilasie en fotosintese in reaksie tot rook water en GR24. Hierdie resultate lei tot die gevolgtrekking dat rook water en GR24 beide groei verbeter in saailing behandel met sout en ook dat alhoewel daar sekere ooreenkomste is tussen die reaksies as gevolg van die plant groei stimulante, dit wel geskiet deur geringe verskillende meganismes.
10

Mutations affecting tomato (Solanum lycopersicum L. cv. Micro-Tom) response to salt stress and their physiological meaning / Mutações afetando a resposta ao estresse salino em tomateiro (Solanum lycopersicum L. cv. Micro-Tom) e seu significado fisiológico

Sa, Ariadne Felicio Lopo de 13 July 2016 (has links)
Salinity is a challenge for crop productivity. Hence, plants exposed to saline environments reduce their vegetative and reproductive growth due to adverse effects of specific ions on metabolism and water relations. In order to cope with salinity, plants display physiological mechanisms based on three main aspects: i) source-sink relationships, ii) resource allocation and iii) alterations in endogenous hormone levels. The roles of developmental and hormonal mechanisms in salt response were investigated here. We employed mutants and transgenic tomato plants affecting different aspects of plant development and hormone response in the same genetic background (cultivar Micro-Tom). The following genotypes were used: Galapagos dwarf (Gdw), Lanata (Ln), lutescent (l), single flower truss (sft), sft heterozygous (sft/+), diageotropica (dgt), entire (e), Never ripe (Nr), epinastic (epi), procera (pro), notabilis (not), anti sense Chloroplastic carotenoid cleavage dioxygenase 7 (35S::asCCD7) and Salicylate hydroxylase (35S::nahG). Among the developmental genotypes studied, sft and l, involved in flower induction and senescence, respectively, were less affected when exposed to salt stress. Although l is considered deleterious due to its precocious senescence, it presented greater shoot biomass and leaf area during salinity. The heterozygous sft/+, whose high productivity was recently linked to an improved vegetative-to-reproductive balance, changed this balance and lowered its yield more than the control MT upon salt treatment. In the analysis of genotypes affecting hormonal status/signaling four kinds of salt responses among the genotypes were observed: i) High shoot growth in spite of high Na:K ratio presented by the strigolactone deficient and high branching CCD7 transgene; ii) High shoot growth and reduced accumulation of Na in tissues (probably due to dilution) presented by the auxin constitutive response e mutant; iii) The opposite response observed in \"ii\" presented by the low auxin sensitivity dgt mutant and iv) growth inhibition combined with reduced levels of Na and higher accumulation of K presented by the not mutant, which produces less ABA. Taken together, the results presented here points to novel developmental mechanisms, such as the promotion of moderate senescence and vegetative growth, and hormonal imbalances to be explored in the pursuing of crops resistant to salt stress. / A salinidade é um desafio para a produtividade agrícola, uma vez que plantas expostas à salinidade tem o crescimento vegetativo e reprodutivo reduzido devido aos efeitos adversos de íons específicos no metabolismo e nas relações hídricas. A fim de lidar com a salinidade, as plantas desempenham mecanismos fisiológicos baseados em três principais características: i) relações fonte-dreno; ii) alocação de reservas e iii) alterações nos níveis endógenos de hormônios. Nesse trabalho, investigamos a relação entre os processos de desenvolvimento e de regulação hormonal com a resposta à salinidade. Para tanto foram usados genótipos de tomateiro com alteração em diferentes vias de desenvolvimento e de produção ou sinalização de hormônios vegetais. Os seguintes genótipos foram usados: Galapagos dwarf (Gdw), Lanata (Ln), lutescent (l), single flower truss (sft), sft heterozygous (sft/+), diageotropica (dgt), entire (e), Never ripe (Nr), epinastic (epi), procera (pro), notabilis (not), anti sense Dioxigenase cloroplastídica de carotenoide 7 (35S::asCCD7) e Salicilato hidroxilase (35S::nahG). Entre os genótipos de desenvolvimento estudados, sft e l, relacionados à menor indução floral e senescência respectivamente, foram os menos afetados quando expostos à salinidade. O genótipo l acumulou maior biomassa e área foliar, apesar de ser considerado deletério devido à senescência precoce. As plantas heterozigotas, sft/+, cuja maior produtividade foi recentemente relacionada a um melhor balanço vegetativo/reprodutivo, alteraram esse balanço sob salinidade e reduziram sua produtividade mais que o controle MT sob estresse salino. Na análise dos genótipos com alteração hormonais foram observados quatro tipos de respostas à salinidade: i) elevado crescimento da parte aérea, apesar da razão Na:K ser alta no genótipo CCD7 cujo transgene induz deficiência de estrigolactona e excessiva ramificação; ii) elevado crescimento e acúmulo reduzido de Na nos tecidos (devido provavelmente a diluição) apresentada pelo mutante de resposta constitutiva a auxina e; iii) o oposto da resposta anterior foi apresentado pelo mutante pouco sensível à auxina , dgt; iv) inibição do crescimento combinado com nível reduzido de Na e alto acúmulo de K apresentada pelo mutante not que produz menos ácido abscísico. Considerados em conjunto, os resultados apresentaram temas para novos mecanismos de desenvolvimento, como a promoção moderada de senescência e do crescimento vegetativo além dos desbalanços hormonais, para serem explorados na busca de culturas resistentes ao estresse salino.

Page generated in 0.0496 seconds