• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 15
  • 13
  • 12
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploration Using Reaction Temperature to Tailor the Degree of Order in Micro-Block Copolymer Proton Exchange Membranes

Buquoi, John Quentin, III 07 June 2010 (has links)
No description available.
12

Organic reactivity and through-space effects

Brown, James John January 2014 (has links)
Chapter 1 presents a mini-review of the prominent theoretical models which are employed in the prediction of the outcome of organic chemical reactions. The chapter covers the most widely used empirical and semi-empirical models, as well as some more recently developed models. Most have a common theme in that they were developed using electrophilic aromatic substitution as a model reaction. Chapter 2 describes the development of a predictive model based on the average local ionisation energy. The model is shown to be of use in predicting both the regioselectivity and relative reactivity of a wide range of molecules in electrophilic aromatic substitution reactions. An attempt is made to expand the model beyond electrophilic aromatic substitution to various other electrophilic reactions. Chapter 3 details the investigation into the predicted enhancement of reactivity of aromatic rings. Calculations of electrostatic surface potential surfaces show that the proximity of an electron rich atom to an aromatic ring increases the electron density of the ring. Analysis of the local ionisation energy surfaces of these molecules suggests that the reactivity of these rings towards electrophiles is also increased. Preliminary studies on model systems using NMR spectroscopy aim to determine whether this effect can be observed experimentally. Chapter 4 introduces a method for applying the average local ionisation energy to nucleophilic reactions. The ability of the model to predict the regiochemical outcome and relative reaction rates of various molecules is examined in a variety of reaction types, including nucleophilic aromatic substitution. Chapter 5 reports studies into the polarisation-induced cooperative effects that exist between hydrogen bonding groups. The cooperative effect has been measured quantitatively in some simple hydroxybenzene derivatives. An improved understanding of this effect, developed using small molecule models, should lead to an improved ability to predict the extent of this effect in larger systems.
13

Efficient and High-Yielding Routes to Diaryliodonium Salts

Bielawski, Marcin January 2008 (has links)
<p>This thesis summarizes three novel and general reaction protocols for the synthesis of diaryliodonium salts. All protocols utilize mCPBA as oxidant and the acids used are either TfOH, to obtain triflate salts, or BF3•Et2O that gives the corresponding tetrafluoroborate salts in situ.</p><p>Chapter two describes the reaction of various arenes and aryl iodides, delivering electron-rich and electron-deficient triflates in moderate to excellent yields.</p><p>In chapter three, it is shown that the need of aryl iodides can be circumvented, as molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates.</p><p>The final and fourth chapter describes the development of a sequential one-pot reaction from aryl iodides and boronic acids, delivering symmetric and unsymmetric, electron-rich and electron-deficient iodonium tetrafluoroborates in moderate to excellent yields. This protocol was developed to overcome mechanistic limitations existing in the protocols described in chapter two and three.</p><p>The methodology described in this thesis is the most general, efficient and high-yielding existing up to date, making diaryliodonium salts easily available for various applications in synthesis.</p>
14

Functionalized PEEK Analogues from 2,4- and 3,5- Difluorobenzophenone Derivatives

Fetters, Hannah 06 June 2019 (has links)
No description available.
15

Efficient and High-Yielding Routes to Diaryliodonium Salts

Bielawski, Marcin January 2008 (has links)
This thesis summarizes three novel and general reaction protocols for the synthesis of diaryliodonium salts. All protocols utilize mCPBA as oxidant and the acids used are either TfOH, to obtain triflate salts, or BF3•Et2O that gives the corresponding tetrafluoroborate salts in situ. Chapter two describes the reaction of various arenes and aryl iodides, delivering electron-rich and electron-deficient triflates in moderate to excellent yields. In chapter three, it is shown that the need of aryl iodides can be circumvented, as molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates. The final and fourth chapter describes the development of a sequential one-pot reaction from aryl iodides and boronic acids, delivering symmetric and unsymmetric, electron-rich and electron-deficient iodonium tetrafluoroborates in moderate to excellent yields. This protocol was developed to overcome mechanistic limitations existing in the protocols described in chapter two and three. The methodology described in this thesis is the most general, efficient and high-yielding existing up to date, making diaryliodonium salts easily available for various applications in synthesis.
16

Covalent Attachment of TADF Chromophores to Thermally Stable Poly(arylene ether)s

Farrar, Samuel 13 August 2022 (has links)
No description available.
17

Developing Green One-Step Organic Reactions in the High Speed Ball Mill

Cook, Teresa L. 14 October 2014 (has links)
No description available.
18

Síntese e avaliação biológica de selenoaminas heteroarílicas : uma nova proposta quimioterápica para malária

Silva, Gabriela Dias da January 2014 (has links)
Orientador: Prof. Dr. Rodrigo Luiz Oliveira Rodrigues Cunha / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência & Tecnologia - Química, 2014. / Errata: Folha 4, linha 20. Onde se lê "Figura 1. Imagem de microscopia evidanciando o anel trofozoíta (no centro em destaque), leia-se Figura 1. Imagem de microscopia evidanciando o anel trofozoíta (no centro, em destaque). Fonte: https://pt.wikipedia.org/wiki/ficheiro:Plasmodium_ovale_01.png / As doenças tropicais negligenciadas (DTNs), características de regiões menos desenvolvidas do planeta com baixos níveis de escolaridade, habitação e saneamento básico estão sujeitas às opções terapêuticas limitadas e ineficientes. A cada ano, cerca de 250 milhões de casos de malária são diagnosticados e aproximadamente um milhão de pessoas morre desta doença. A baixa eficácia, elevada toxicidade e a emergência de cepas de parasitas resistentes à fármacos, são fatores que determinam a necessidade da síntese de novos fármacos e programas de investimentos e inovação em pesquisa e desenvolvimento (P&D). A proposta de compostos híbridos ou funcionalização de moléculas, como também pode ser chamada, é uma abordagem bem estabelecida para síntese de fármacos. Moléculas híbridas ganham destaque com o uso em várias áreas terapêuticas, tais como inflamação, alergia, depressão, propostas quimioterápicas contra o câncer e parasitemia. Recentemente as atividades biológicas de compostos de Selênio têm recebido crescente atenção, em especial os derivados hipervalentes de Selênio (IV) que têm sido estudados por nosso grupo de pesquisas como inibidores de cisteína peptidases. O merecido destaque dos compostos de Selênio hipervalentes, avaliados como inibidores enzimáticos aumentam as chances de encontrar inibidores mais eficientes e seletivos para enzimas envolvidas em infecções parasitárias. Neste sentido, esse trabalho propôs a junção de duas propriedades químicas que atuam contra o desenvolvimento do Plasmodium falciparum (protozoário responsável pela Malária): a inibição da heme-polimerase através da ação de sistemas hetrocíclicos nitrogenados (como bases fracas), e a inibição de cisteína peptidases com a atuação das selenuranas, as quais reduzem o efluxo da droga em cepas resistentes a outros fármacos. Os compostos sintetizados foram submetidos a testes biológicos para a avaliação de seu potencial como quimioterápicos para a malária. Os compostos foram eficientes na inibição do desenvolvimento dos parasitas in vitro e mostraram interferir na homeostase celular. Além disso, não causaram hemólise e nem diminuição significativa da viabilidade de células endoteliais. Juntos, os resultados obtidos mostram que esses compostos são potenciais candidatos para desenvolvimento de novos fármacos, uma vez que é letal ao parasita e contém os benefícios de composto híbrido. / Neglected tropical diseases (NTDs), typical of less developed regions of the world with low levels of education, habitation and sanitation are subject to limited and ineffective treatment options. Each year, about 250 million cases of Malaria are diagnosed and about 1 million people die of this disease. The low efficacy, high toxicity and the emergence of chloroquine resistant in Plasmodium falciparum strains are factors that determine the necessity for synthesis of new drugs and investments and innovations programs in research and development (R&D). The proposed of hybrid compounds, or they are also called functionalization of molecules, is a well-established approach to synthesis of drugs. Hybrid molecules are highlighted on use in various therapeutic areas such as inflammation, allergy, depression, proposals for cancer and parasitosis chemotherapy. Recently the biological activities of selenium compounds has received great attention, particularly hypervalent derivatives of selenium (IV) that it has been studied by our research group as inhibitors of cysteine peptidases. The worth prominence of hypervalent selenium compounds evaluated as enzyme inhibitors, which increase the chances of finding more efficient and selective for enzymes involved in parasitic infections inhibitors . In this way, this work proposed the addition of two chemical properties that act against the development of Plasmodium falciparum (protozoan responsible for Malaria). Inhibition of heme polymerase by way of the action of amino groups (such as weak bases), and inhibition of cysteine peptidases with the performance of selenuranes reduces the efflux of drug in resistant strains to other drugs. The synthesized compounds were subjected to biological evaluation of their potential as chemotherapeutic agents for Malaria tests. The compounds were effective in inhibiting the development of parasites in vitro and interference on cellular homeostasis. In addition, didn¿t cause hemolysis or a significant decrease in viability of endothelial cells. Together, the results show that these compounds are good candidates for development of new drugs since it is lethal to the parasite, does not harm the host and has the benefits of a hybrid compound.
19

Perfluroaryl azides : Reactivities, Unique Reactions and their Applications in the Synthesis of Theranostic Agents

Xie, Sheng January 2015 (has links)
The work centersaround perfluoroaryl azides (PFAAs), and theirability to undergo certain fast and robusttransformations. The chemistry was furtherappliedfor biomedical applications. The first section focuses on the azide-aldehyde-amine cycloaddition using PFAAs. Experimental and computational investigations uncovered a fast azide-enamine cycloaddition to form triazolines, which spontaneously rearrange into stable amidine products. In addition, this transformation was explored in the formulation of pure nanodrugs. Because this reaction can introduce a phenyl and a perfluoroaryl moiety enabling supramolecular interactions near the antibiotic drug, the resulting ciprofloxacin derivatives formed nano-sized aggregates by precipitation, which displayed aggregation-induced emission for bacterial imaging as well as enhanced size-dependent antibacterial efficacy. In the second section, the high electrophilicity of PFAAs was explored to transform azides to aryl amides. The reactivity of PFAAs in the thioacid/azide reaction was studied. In addition, PFAAs were discovered to react with phenylacetaldehyde to form aryl amidesviaan azide-enol cycloaddition, similar tothe perfluoroaryl azide-aldehyde-amine reaction.This strategyof amide synthesiswas furthermoregeneralized through a combination of base-catalyzed azide-enolate cycloaddition reaction and acid-or heat-promoted rearrangement of triazolines. The last section describes a type of azide fluorogens whose fluorescence can be switched on by alight-initiated intramolecular nitrene insertion intoa C-H bond in the neighboring aromaticring. These fluorogenic structures were efficiently accessed via the direct nucleophilic aromatic substitution of PFAAs. / <p>QC 20150903</p>
20

Synthèse de nouveaux dérivés pyridopyrimidiniques, imidazopyridiniques et imidazopyridaziniques : évaluation de leurs propriétés biologiques. / Synthesis of new pyridopyrimidine, imidazopyridine and imidazopyridazine derivatives : evaluation of their biological properties

Dehbi, Oussama 08 December 2012 (has links)
Les produits appartenant à la famille des pyridopyrimidines sont caractérisés par leur intense utilisation dans le domaine pharmacologique, ce qui a poussé différentes équipes de recherche, de par le monde, à les étudier chimiquement et biologiquement. Dans ce travail, nous nous sommes intéressés au groupe des pyridopyrimidines et, plus particulièrement, à l’isomère le moins décrit dans la littérature, à savoir les pyrido[3,2-d]pyrimidines. Les composés ciblés sont synthétisés à partir de la 2,7-dichloropyrido[3,2-d]pyrimidine, via des substitutions nucléophiles aromatiques et des couplages pallado-catalysés et ce, dans le but d’obtenir de puissants inhibiteurs de kinases. Ce but a été atteint puisqu’en effet plusieurs des molécules élaborées inhibent les kinases testées avec des concentrations de l’ordre du nanomolaire. Des résultats pharmacologiques aussi concluants nous ont amenés à étendre nos études à d’autres pyridopyrimidines, à savoir les pyrido[2,3-d]pyrimidines ainsi qu’à d’autres types de bicycles polyazotés, en l’occurrence les imidazo[1,2-a]pyridines et les imidazo[1,2-b]pyridazines. / Products belonging to the pyridopyrimidine family are characterized by their intense use in pharmacology. The increase of interest for this heterocyclic scaffold prompted different research teams around the world to study their chemically and biologically properties. In this work, we are interested in the functionalization of pyridopyrimidines and, more specifically, of the less described regioisomer, namely pyrido[3,2-d]pyrimidines. The target compounds were synthesized from 2,7-dichloropyrido[3,2-d]pyrimidine via nucleophilic aromatic substitution and palladium-catalyzed couplings and, in order to obtain potent kinases inhibitors. Our goal has been achieved with several elaborate molecules. These bioactive compounds inhibit kinases such as Cyclin Dependant Kinases (CDK), Glycogen Synthase 3 (GSK3) or Dual specificity tYRosine-phosphorylation-regulated Kinase 1A (DYRK1A) in the nanomolar range. These biological targets are mainly involved in degenerative process or down syndrome. These pharmacological results led us to extend our studies to other pyridopyrimidines, namely pyrido[2,3-d]pyrimidines as well as other types of polynitrogenated bicycles, namely imidazo[1,2- a]pyridine and imidazo[1,2-b]pyridazine.

Page generated in 0.1271 seconds