• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Performance Algorithms for Structural Analysis of Grid Stiffened Panels

Qu, Shaohong 23 September 1997 (has links)
In this research, we apply modern high performance computing techniques to solve an engineering problem, structural analysis of grid stiffened panels. An existing engineering code, SPANDO, is studied and modified to execute more efficiently on high performance workstations and parallel computers. Two new SPANDO packages, a modified sequential SPANDO and parallel SPANDO, are developed. In developing the new sequential SPANDO, we use two existing high performance numerical packages: LAPACK and ARPACK to solve our linear algebra problems. Also, a new block-oriented algorithm for computing the matrix-vector multiplication w=A⁻¹Bx is developed. The experimental results show that the new sequential SPANDO can save over 70% of memory size, and is at least 10 times faster than the original SPANDO. In parallel SPANDO, ScaLAPACK and BLACS are used. There are many factors that may affect the performance of parallel SPANDO. The parallel performance and the affects of these factors are discussed in this thesis. / Master of Science
2

A versatile parallel Lanczos eigensolver solution for MPI compatible AMLS

Haben, Joshua D. 03 September 2009 (has links)
PARPACK is an open-source Arnoldi/Lanczos eigensolver package which is compatible with a number of distributed parallel computing schemes. This thesis concentrates on a set of driver routines for PARPACK that were developed for use in the Automated Multilevel Substructuring (AMLS) vibration analysis software package developed at The University of Texas at Austin. AMLS requires many truncated eigensolutions to symmetric generalized algebraic eigenvalue problems. There is a need in AMLS to solve these problems in several different computing regimes, from serial execution on a single processor, to parallel execution on multiple nodes of a distributed computing cluster. This work is designed to enable evaluation, selection, and development of PARPACK capabilities for the variety of eigensolutions required by AMLS. / text
3

Graph Similarity, Parallel Texts, and Automatic Bilingual Lexicon Acquisition

Törnfeldt, Tobias January 2008 (has links)
In this masters’ thesis report we present a graph theoretical method used for automatic bilingual lexicon acquisition with parallel texts. We analyze the concept of graph similarity and give an interpretation, of the parallel texts, connected to the vector space model. We represent the parallel texts by a directed, tripartite graph and from here use the corresponding adjacency matrix, A, to compute the similarity of the graph. By solving the eigenvalue problem ρS = ASAT + ATSA we obtain the self-similarity matrix S and the Perron root ρ. A rank k approximation of the self-similarity matrix is computed by implementations of the singular value decomposition and the non-negative matrix factorization algorithm GD-CLS. We construct an algorithm in order to extract the bilingual lexicon from the self-similarity matrix and apply a statistical model to estimate the precision, the correctness, of the translations in the bilingual lexicon. The best result is achieved with an application of the vector space model with a precision of about 80 %. This is a good result and can be compared with the precision of about 60 % found in the literature.
4

Graph Similarity, Parallel Texts, and Automatic Bilingual Lexicon Acquisition

Törnfeldt, Tobias January 2008 (has links)
<p>In this masters’ thesis report we present a graph theoretical method used for automatic bilingual lexicon acquisition with parallel texts. We analyze the concept of graph similarity and give an interpretation, of the parallel texts, connected to the vector space model. We represent the parallel texts by a directed, tripartite graph and from here use the corresponding adjacency matrix, A, to compute the similarity of the graph. By solving the eigenvalue problem ρS = ASAT + ATSA we obtain the self-similarity matrix S and the Perron root ρ. A rank k approximation of the self-similarity matrix is computed by implementations of the singular value decomposition and the non-negative matrix factorization algorithm GD-CLS. We construct an algorithm in order to extract the bilingual lexicon from the self-similarity matrix and apply a statistical model to estimate the precision, the correctness, of the translations in the bilingual lexicon. The best result is achieved with an application of the vector space model with a precision of about 80 %. This is a good result and can be compared with the precision of about 60 % found in the literature.</p>
5

Méthodes numériques avec des éléments finis adaptatifs pour la simulation de condensats de Bose-Einstein / Adaptive Finite-element Methods for the Numerical Simulation of Bose-Einstein Condensates

Vergez, Guillaume 06 June 2017 (has links)
Le phénomène de condensation d’un gaz de bosons lorsqu’il est refroidi à zéro degrés Kelvin futdécrit par Einstein en 1925 en s’appuyant sur des travaux de Bose. Depuis lors, de nombreux physiciens,mathématiciens et numériciens se sont intéressés au condensat de Bose-Einstein et à son caractère superfluide. Nous proposons dans cette étude des méthodes numériques ainsi qu’un code informatique pour la simulation d’un condensat de Bose-Einstein en rotation. Le principal modèle mathématique décrivant ce phénomène physique est une équation de Schrödinger présentant une non-linéarité cubique,découverte en 1961 : l’équation de Gross-Pitaevskii (GP). En nous appuyant sur le logiciel FreeFem++,nous nous servons d’une discrétisation spatiale en éléments-finis pour résoudre numériquement cette équation. Une méthode d’adaptation du maillage à la solution et l’utilisation d’éléments-finis d’ordre deux nous permet de résoudre finement le problème et d’explorer des configurations complexes en deux ou trois dimensions d’espace. Pour sa version stationnaire, nous avons développé une méthode de gradient de Sobolev ou une méthode de point intérieur implémentée dans la librairie Ipopt. Pour sa version instationnaire, nous utilisons une méthode de Time-Splitting combinée à un schéma de Crank-Nicolson ou une méthode de relaxation. Afin d’étudier la stabilité dynamique et thermodynamique d’un état stationnaire, le modèle de Bogoliubov-de Gennes propose une linéarisation de l’équation de Gross-Pitaevskii autour de cet état. Nous avons élaboré une méthode permettant de résoudre ce système aux valeurs et vecteurs propres, basée sur un algorithme de Newton ainsi que sur la méthode d’Arnoldi implémentée dans la librairie Arpack. / The phenomenon of condensation of a boson gas when cooled to zero degrees Kelvin was described by Einstein in 1925 based on work by Bose. Since then, many physicists, mathematicians and digitizers have been interested in the Bose-Einstein condensate and its superfluidity. We propose in this study numerical methods as well as a computer code for the simulation of a rotating Bose-Einstein condensate.The main mathematical model describing this phenomenon is a Schrödinger equation with a cubic nonlinearity, discovered in 1961: the Gross-Pitaevskii (GP) equation. By using the software FreeFem++ and a finite elements spatial discretization we solve this equation numerically. The mesh adaptation to the solution and the use of finite elements of order two allow us to solve the problem finely and to explore complex configurations in two or three dimensions of space. For its stationary version, we have developed a Sobolev gradient method or an internal point method implemented in the Ipopt library. .For its unsteady version, we use a Time-Splitting method combined with a Crank-Nicolson scheme ora relaxation method. In order to study the dynamic and thermodynamic stability of a stationary state,the Bogoliubov-de Gennes model proposes a linearization of the Gross-Pitaevskii equation around this state. We have developed a method to solve this eigenvalues and eigenvector system, based on a Newton algorithm as well as the Arnoldi method implemented in the Arpack library.

Page generated in 0.0329 seconds