Spelling suggestions: "subject:"arpack"" "subject:"overpack""
1 |
Model Order Reduction in Structural Mechanics / Coupling the Rigid and Elastic Multi Body DynamicsKoutsovasilis, Panagiotis 06 October 2009 (has links) (PDF)
Gegenstand dieser Arbeit ist die Forschungsdisziplin, welche in der Strukturmechanik als Modellordnungsreduktion bekannt ist. Im Mittelpunkt stehen Kopplungsprozesse von starren und elastischen
Mehrkörpersystemen - sowohl in theoretischer Hinsicht als auch bezüglich der praktischen Realisation im Rahmen des Finite-Elemente-Programms ANSYS und des Mehrkörpersimulationsprogramms SIMPACK. Eine Vielfalt von strukturerhaltendenMOR-Methoden wurde zum Zwecke des Überblicks dargestellt. Darüber hinaus findet sich eine Kategorisierungsmethodik in Hinsicht auf den später beschriebenen FEM-MKS-Kopplungsprozess.
Die Effizienz der MOR-Methoden wird sowohl hinsichtlich der Qualität der ROM als auch bezogen auf die hierfür benötigte Rechenzeit bemessen. Aus diesem Grunde wurden etliche MOR Schemata dargelegt, mit dem Ziel, den Effizienzfaktor während der Berechnung eines ROMs zu maximieren, das heißt maximale Qualität und minimale Rechenzeit zu erzielen. Die Validierung der dynamischen ROM-Eigenschaften basiert auf der Anwendung der sogenannten Modellkorrelationskriterien. Dies wurde an vier Anwendungsbeispielen aus dem Feld der Strukturmechanik getestet: der 3D-Balkenstruktur, der UIC60-Schiene, dem Pleuel und der Kurbelwelle.
Die Anwendung der diagonal perturbation-Methodik verbessert die Kondition der Steifigkeitsmatrix eines Modells, von beiden Arten von Lösungsprozeduren, d.h. direkte und iterative Verfahren, betroffen sind. Die dynamische Bewegung mechanischer MKS wird als ein Index-3-DAE-Systemformuliert und die Information über die elastischen Körper wird in Form der sogenannten Standard Input Datei in einen MKS-Code transferriert. Die Einführung des Back-projection-Ansatzes ermöglicht
die weitere Verwendung bestimmter ROM-Typen, derren assoziierten physikalische Eigenschaften unangemessen definiert wurden.
Zum Abschluss werden die theoretischen, modellierenden und numerischen Fortschritte der Arbeit resümiert und kombiniert im Sinne der Model Order Reduction Package Toolbox (MORPACK). Die Matlab-basierte MORPACK-Toolbox ermöglicht den FEM-MKS-Kopplungsprozess für die Verwendung
von ANSYS und SIMPACK. Hierin sind ein Großteil der zuvor erläuterten Erweiterungen eingeschlossen. Mit Hilfe der zwei integrierten inneren MOR- und SID-Schnittstellen als auch der vier Anwendungsebenen wird der Import von freien oder eingespannten ROM in SIMPACK ermöglicht. / The research discipline referred to as the Model Order Reduction in structural mechanics is the topic of this Thesis. Special emphasis is given to the coupling process of rigid and elastic Multi Body Dynamics in terms of both the theoretical aspects and the practical realization within the environment of the commercial Finite Element and the Multi Body Systems software packages, ANSYS and SIMPACK respectively.
In this regard, a variety of structure preserving Model Order Reduction methods is presented and a categorization methodology is provided in view of the later FEM-MBS coupling process. The algorithmic scheme of several of the MOR methods indicates the capability of generating qualitatively better Reduced Order Models than the standardized Guyan and Component Mode Synthesis approaches.
The efficiency of a MOR method is measured in terms of both the quality of the ROM and the associated time required for the .computation
Based on the application of the, so called, Model Correlation Criteria the efficiency of the MOR schemes is tested on four application examples originating from the area of structural mechanics, i.e. the 3D elastic solid bar structure, the UIC60 elastic rail, the elastic piston rod, and the elastic crankshaft model. Herewith, the superiority of alternative MOR schemes in comparison to Guyan or CMS methods is demonstrated in terms of the ROM?s quality and the computation time by the use of either the one-step or the two-step MOR algorithms.
Numerous of the FE discretized structures suffer from the, so called, ill-conditioned properties regarding the associated stiffness matrix.
On one hand, the direct solution of a MOR method might produce erroneous ROMs due to the associated truncation phenomenon and on the other hand, any kind of iterative approach suffers from vast computation times. The application of the diagonal perturbation methodology improves the condition properties of the model?s stiffness matrix and thus, both kinds of the aforementioned solution procedures are affected.
The back-projection approach is introduced, which projects the ROM belonging to the Non physical subspace reduction-expansion methods category back onto the physical configuration space and thus, enabling its further usage in a MBS code, e.g. SIMPACK.
Finally, the theoretical, modelling, and numerical advancements are combined in terms of the Model Order Reduction Package. The Matlab-based MORPACK toolbox enables the FEM-MBS coupling process for the ANSYS-SIMPACK utilization and herewith, several of the aforementioned enhancements are included. With the help of the two integrated inner interfaces, i.e. MOR and SID, as well as four application levels, the import into SIMPACK of alternatively free or fixed ROMs is enabled. The functionality of MORPACK is demonstrated based on two application examples, namely, the 3D elastic solid bar and the UIC60 elastic rail, the dynamic properties of which are validated prior to their import into SIMPACK.
|
2 |
Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension / Optimale Kombination von strukturmechanischen Modellreduktionsverfahren und Wahl einer geeigneten ZwischendimensionPaulke, Jan 19 August 2014 (has links) (PDF)
A two-step model order reduction method is investigated in order to overcome problems of certain one-step methods. Not only optimal combinations of one-step reductions are considered but also the selection of a suitable intermediate dimension (ID) is described. Several automated selection methods are presented and their application tested on a gear box model. The implementation is realized using a Matlab-based Software MORPACK. Several recommendations are given towards the selection of a suitable ID, and problems in Model Order Reduction (MOR) combinations are pointed out. A pseudo two-step is suggested to reduce the full system without any modal information. A new node selection approach is proposed to enhance the SEREP approximation of the system’s response for small reduced representations. / Mehrschrittverfahren der Modellreduktion werden untersucht, um spezielle Probleme konventioneller Einschrittverfahren zu lösen. Eine optimale Kombination von strukturmechanischen Reduktionsverfahren und die Auswahl einer geeigneten Zwischendimension wird untersucht. Dafür werden automatische Verfahren in Matlab implementiert, in die Software MORPACK integriert und anhand des Finite Elemente Modells eines Getriebegehäuses ausgewertet. Zur Auswahl der Zwischendimension werden Empfehlungen genannt und auf Probleme bei der Kombinationen bestimmter Reduktionsverfahren hingewiesen. Ein Pseudo- Zweischrittverfahren wird vorgestellt, welches eine Reduktion ohne Kenntnis der modalen Größen bei ähnlicher Genauigkeit im Vergleich zu modalen Unterraumverfahren durchführt. Für kleine Reduktionsdimensionen wird ein Knotenauswahlverfahren vorgeschlagen, um die Approximation des Frequenzganges durch die System Equivalent Reduction Expansion Process (SEREP)-Reduktion zu verbessern.
|
3 |
Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension: Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate DimensionPaulke, Jan 08 May 2014 (has links)
A two-step model order reduction method is investigated in order to overcome problems of certain one-step methods. Not only optimal combinations of one-step reductions are considered but also the selection of a suitable intermediate dimension (ID) is described. Several automated selection methods are presented and their application tested on a gear box model. The implementation is realized using a Matlab-based Software MORPACK. Several recommendations are given towards the selection of a suitable ID, and problems in Model Order Reduction (MOR) combinations are pointed out. A pseudo two-step is suggested to reduce the full system without any modal information. A new node selection approach is proposed to enhance the SEREP approximation of the system’s response for small reduced representations.:Contents
Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix
1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2
2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4
2.2 Model Order Reduction.....................................................................5
2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8
2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13
2.5 Krylov Subspace Reduction Methods...............................................14
2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19
2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23
3 Selection of Active Degrees of Freedom............................................25
3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28
3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34
3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36
3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41
4 Two-Step Reduction in MORPACK.......................................................42
4.1 Structure of MORPACK.....................................................................42
4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48
4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54
5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73
6 Summary and Conclusions...................................................................77
7 Zusammenfassung und Ausblick..........................................................79
Bibliography............................................................................................81
List of Tables..........................................................................................86
List of Figures.........................................................................................88
A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96 / Mehrschrittverfahren der Modellreduktion werden untersucht, um spezielle Probleme konventioneller Einschrittverfahren zu lösen. Eine optimale Kombination von strukturmechanischen Reduktionsverfahren und die Auswahl einer geeigneten Zwischendimension wird untersucht. Dafür werden automatische Verfahren in Matlab implementiert, in die Software MORPACK integriert und anhand des Finite Elemente Modells eines Getriebegehäuses ausgewertet. Zur Auswahl der Zwischendimension werden Empfehlungen genannt und auf Probleme bei der Kombinationen bestimmter Reduktionsverfahren hingewiesen. Ein Pseudo- Zweischrittverfahren wird vorgestellt, welches eine Reduktion ohne Kenntnis der modalen Größen bei ähnlicher Genauigkeit im Vergleich zu modalen Unterraumverfahren durchführt. Für kleine Reduktionsdimensionen wird ein Knotenauswahlverfahren vorgeschlagen, um die Approximation des Frequenzganges durch die System Equivalent Reduction Expansion Process (SEREP)-Reduktion zu verbessern.:Contents
Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix
1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2
2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4
2.2 Model Order Reduction.....................................................................5
2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8
2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13
2.5 Krylov Subspace Reduction Methods...............................................14
2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19
2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23
3 Selection of Active Degrees of Freedom............................................25
3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28
3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34
3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36
3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41
4 Two-Step Reduction in MORPACK.......................................................42
4.1 Structure of MORPACK.....................................................................42
4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48
4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54
5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73
6 Summary and Conclusions...................................................................77
7 Zusammenfassung und Ausblick..........................................................79
Bibliography............................................................................................81
List of Tables..........................................................................................86
List of Figures.........................................................................................88
A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96
|
4 |
Model Order Reduction in Structural Mechanics: Coupling the Rigid and Elastic Multi Body DynamicsKoutsovasilis, Panagiotis 21 September 2009 (has links)
Gegenstand dieser Arbeit ist die Forschungsdisziplin, welche in der Strukturmechanik als Modellordnungsreduktion bekannt ist. Im Mittelpunkt stehen Kopplungsprozesse von starren und elastischen
Mehrkörpersystemen - sowohl in theoretischer Hinsicht als auch bezüglich der praktischen Realisation im Rahmen des Finite-Elemente-Programms ANSYS und des Mehrkörpersimulationsprogramms SIMPACK. Eine Vielfalt von strukturerhaltendenMOR-Methoden wurde zum Zwecke des Überblicks dargestellt. Darüber hinaus findet sich eine Kategorisierungsmethodik in Hinsicht auf den später beschriebenen FEM-MKS-Kopplungsprozess.
Die Effizienz der MOR-Methoden wird sowohl hinsichtlich der Qualität der ROM als auch bezogen auf die hierfür benötigte Rechenzeit bemessen. Aus diesem Grunde wurden etliche MOR Schemata dargelegt, mit dem Ziel, den Effizienzfaktor während der Berechnung eines ROMs zu maximieren, das heißt maximale Qualität und minimale Rechenzeit zu erzielen. Die Validierung der dynamischen ROM-Eigenschaften basiert auf der Anwendung der sogenannten Modellkorrelationskriterien. Dies wurde an vier Anwendungsbeispielen aus dem Feld der Strukturmechanik getestet: der 3D-Balkenstruktur, der UIC60-Schiene, dem Pleuel und der Kurbelwelle.
Die Anwendung der diagonal perturbation-Methodik verbessert die Kondition der Steifigkeitsmatrix eines Modells, von beiden Arten von Lösungsprozeduren, d.h. direkte und iterative Verfahren, betroffen sind. Die dynamische Bewegung mechanischer MKS wird als ein Index-3-DAE-Systemformuliert und die Information über die elastischen Körper wird in Form der sogenannten Standard Input Datei in einen MKS-Code transferriert. Die Einführung des Back-projection-Ansatzes ermöglicht
die weitere Verwendung bestimmter ROM-Typen, derren assoziierten physikalische Eigenschaften unangemessen definiert wurden.
Zum Abschluss werden die theoretischen, modellierenden und numerischen Fortschritte der Arbeit resümiert und kombiniert im Sinne der Model Order Reduction Package Toolbox (MORPACK). Die Matlab-basierte MORPACK-Toolbox ermöglicht den FEM-MKS-Kopplungsprozess für die Verwendung
von ANSYS und SIMPACK. Hierin sind ein Großteil der zuvor erläuterten Erweiterungen eingeschlossen. Mit Hilfe der zwei integrierten inneren MOR- und SID-Schnittstellen als auch der vier Anwendungsebenen wird der Import von freien oder eingespannten ROM in SIMPACK ermöglicht. / The research discipline referred to as the Model Order Reduction in structural mechanics is the topic of this Thesis. Special emphasis is given to the coupling process of rigid and elastic Multi Body Dynamics in terms of both the theoretical aspects and the practical realization within the environment of the commercial Finite Element and the Multi Body Systems software packages, ANSYS and SIMPACK respectively.
In this regard, a variety of structure preserving Model Order Reduction methods is presented and a categorization methodology is provided in view of the later FEM-MBS coupling process. The algorithmic scheme of several of the MOR methods indicates the capability of generating qualitatively better Reduced Order Models than the standardized Guyan and Component Mode Synthesis approaches.
The efficiency of a MOR method is measured in terms of both the quality of the ROM and the associated time required for the .computation
Based on the application of the, so called, Model Correlation Criteria the efficiency of the MOR schemes is tested on four application examples originating from the area of structural mechanics, i.e. the 3D elastic solid bar structure, the UIC60 elastic rail, the elastic piston rod, and the elastic crankshaft model. Herewith, the superiority of alternative MOR schemes in comparison to Guyan or CMS methods is demonstrated in terms of the ROM?s quality and the computation time by the use of either the one-step or the two-step MOR algorithms.
Numerous of the FE discretized structures suffer from the, so called, ill-conditioned properties regarding the associated stiffness matrix.
On one hand, the direct solution of a MOR method might produce erroneous ROMs due to the associated truncation phenomenon and on the other hand, any kind of iterative approach suffers from vast computation times. The application of the diagonal perturbation methodology improves the condition properties of the model?s stiffness matrix and thus, both kinds of the aforementioned solution procedures are affected.
The back-projection approach is introduced, which projects the ROM belonging to the Non physical subspace reduction-expansion methods category back onto the physical configuration space and thus, enabling its further usage in a MBS code, e.g. SIMPACK.
Finally, the theoretical, modelling, and numerical advancements are combined in terms of the Model Order Reduction Package. The Matlab-based MORPACK toolbox enables the FEM-MBS coupling process for the ANSYS-SIMPACK utilization and herewith, several of the aforementioned enhancements are included. With the help of the two integrated inner interfaces, i.e. MOR and SID, as well as four application levels, the import into SIMPACK of alternatively free or fixed ROMs is enabled. The functionality of MORPACK is demonstrated based on two application examples, namely, the 3D elastic solid bar and the UIC60 elastic rail, the dynamic properties of which are validated prior to their import into SIMPACK.
|
Page generated in 0.0231 seconds