• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 11
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vascular Reactivity in Newly-Formed and Mature Arterialized Collateral Capillaries

Hellstrom, Sara K 01 December 2014 (has links)
Peripheral arterial occlusive disease (PAOD) is a globally-prevalent cardiovascular disease in which atherosclerotic plaques narrow arterial lumen diameters and restrict blood flow to downstream tissues. The impact of these occlusions can be mitigated by collateral vessels that connect parallel arterial branches and act as natural bypasses to maintain perfusion. In animal models that lack collateral arterioles, capillaries that connect terminal arteriolar segments can arterialize and form functional collaterals following an ischemic event; however, in the early stages of development, vasodilation is impaired. We explored the mechanism of impaired vasodilation in arterialized collateral capillaries (ACCs) and pre-existing collaterals (PECs) by evaluating endothelial-dependent vasodilation and endothelial-independent reactivity at day seven following the ischemic event. We also evaluated functional vasodilation in mature ACCs and PECs at day 21 by applying vasodilation inhibitors during the electrical stimulation of muscle contraction. Arterial occlusion was performed by ligating the cranial-lateral spinotrapezius feed artery in Balb/C mice, a strain that either lacks native arteriolar collaterals or contains a single collateral arteriole (~50% of mice), as opposed to the C57Bl/6 strain, which each contain 10 or more collateral arterioles. At seven days post-surgery, both vasodilation and vasoconstriction were impaired in ACCs when compared to terminal arterioles of similar size in unoperated limbs, but still exhibited significant changes when compared to baseline. The comparable reactivity in both endothelial-dependent and independent vasodilation at day-seven in ACCs indicates that vascular smooth muscle cells are likely responsible for the impairment, as they may still be developing, rearranging, or both, and are not yet fully capable of regulating diameter in immature ACCs. However, by 21 days post-ligation, ACCs regained the capacity to dilate in response to muscle contraction, and utilized similar vasodilation pathways as control vessels. At seven days post-ligation, PECs had impaired endothelialindependent dilation, but successful endothelial-dependent dilation, indicating the use of alternative pathways to dilate. Unlike ACCs, the PECs never completely restored vasodilation capabilities by day 21, which may be due to a variation in smooth muscle phenotype, sensitivity to vasoactive agents, and/or limited growth factor expression. For future work, evaluating collateral formation and vasodilation in a diseased model and investigating molecular variations in the smooth muscle may yield additional knowledge that can improve therapies for patients during ischemic events.
12

The Role of GDF 11 in Cardiovascular Regeneration

Jamaiyar, Anurag 14 April 2020 (has links)
No description available.
13

Development of a Robust Methodology to Obtain and Assess Myogenic Precursor Cells for Their Use in Regenerative Therapies

Lasa, Ricardo 01 March 2021 (has links) (PDF)
Peripheral arterial occlusive disease (PAOD) is characterized by buildup of atherosclerotic plaque in peripheral arteries that leads to an occlusion that can interrupt the supply of blood to the peripheral tissue, causing downstream tissue ischemia/hypoxia. PAOD is estimated to affect over 200 million patients worldwide. Current surgical revascularization treatments can be effective in about half of the patient population, leading to a significant number of patients with no treatment options beyond pharmacological intervention and lifestyle modification. The decrease in blood flow downstream of the occlusion leads to increased blood pressure gradient in the microvasculature, specifically in vessels that connect arterial trees (known as collaterals), which will structurally enlarge and increase blood flow to the downstream ischemic/hypoxic tissue. Targeting this process, known as arteriogenesis, can provide a potential treatment option for patients suffering from PAOD by redirecting blood flow around an occluded artery and therefore supplying hypoxic tissue with blood. In order to enhance this process, cellular transplantation has been used but the current cell types explored have not been successful in enhancing arteriogenesis. Myoblasts, proliferative muscle progenitor cells, mediate muscle regeneration, and promote angiogenesis (the growth of new capillaries to supply hypoxic tissue). Preliminary data indicates that myoblasts also promote arteriogenesis in obese mice, making them an attractive therapeutic candidate. However, the methods used in the preliminary studies limited our ability to confirm those findings and characterize the cell therapy candidate. Specifically, we lacked a reproducible and optimized method to isolate myogenic cells and characterize these cells during in vitro culture and after in vivo transplantation. Therefore, the 1st Aim of this study was to optimize the isolation to obtain the highest number possible of satellite cell-yielding myofibers by modification of enzymatic and mechanical digestion of extensor digitorum longus muscle. Modifications to this methodology increased myofiber yield by more than 150%. The 2nd Aim was to optimize the expansion of satellite cell-derived myoblasts by modification of culture media supplements to promote cell expansion while minimizing maturation. bFGF and SB 203580 supplementation improved cell proliferation and prevented myogenic cell maturation during 7-days of in vitro culture. The 3rd Aim was to develop a process for evaluating the quantity and identity of isolated myogenic cells before and after transplantation. This was achieved by implementing an immunofluorescent transcription factor labeling protocol to determine cell identity and a live/dead cell viability assay to determine cell viability and quantity. All 3 aims were integrated into a proof-of-concept pilot study on a hindlimb ischemic BALB/c mouse model. While myoblast transplantation failed to increase collateral arteriogenesis in this model, the process developed in this project provides a reproducible framework for future studies on myoblast-enhanced arteriogenesis. Further research on the effects of myoblast transplantation on arteriogenesis may facilitate the development of new therapies that improve the prognosis of patients with PAOD.
14

Optimization of Stem Cell Therapies for Coronary Collateral Growth in Cardiovascular Disease

Logan, Suzanna J. 26 May 2014 (has links)
No description available.
15

Charakterisierung der frühen adaptiven zerebralen Arteriogenese

Hillmeister, Philipp 19 January 2010 (has links)
Arteriogenese bezeichnet das adaptive Wachstum von präexistenten kollateralen Arterien. Im Falle eines Arterienverschlusses ist Arteriogenese der endogen effizienteste Kompensationsmechanismus, um das Hypoperfusionsgebiet mit ausreichend Blut zu versorgen (Biologischer Bypasses). In dieser Arbeit wurde das frühe Wachstum von Kollateralgefäßen im Gehirn im ersten Modell für zerebrale Arteriogenese, dem 3-VO Modell (3-vessel occlusion), in der Ratte charakterisiert. (I) Die Untersuchung am nicht-ischämischen 3-VO Hypoperfusionsmodell zeigten, dass 7 Tage nach 3-VO die Arteria cerebri posterior (PCA) signifikant im Diameter anwächst. Histologische Untersuchungen konnten ein vermehrtes Zellwachstum in der PCA und das Einwandern von Makrophagen in den perivaskulären Bereich (24 Stunden und 3 Tage post 3-VO) darstellen und eine Aktivierung des Endothels 3 Tage nach 3-VO wurde mittels Rasterelektronenmikroskopie identifizieren. (II) Für eine genaue Anaylse des globalen Genexpressionsprofils der zerebralen Arteriogense wurde die wachsende PCA selektiv aus dem Gehirn entnommen und ein Genexpressionsprofil für die frühe zerebrale Arteriogenese erstellt (164 Gene dereguliert). Eine Unteruschung von biologischen und molekularen Prozessen zeigte, dass eine Vielzahl der deregulierten Gene in Zellproliferation und Inflammation involviert sind. Die Expression der Protease-Inhibitoren Kininogen und TIMP-1 wurde als “Marker” der frühen Arteriogenese in der PCA lokalisiert werden. Zusammenfassend zeigt diese Arbeit erstmals eine Übersicht der biologischen Prozesse in der zerebralen Arteriogenese und eröffnet neue Ideen für eine mögliche therapeutische Strategie. / Arteriogenesis, the adaptive outward growth of pre-existing collateral arteries, is the most efficient endogenous rescue mechanisms in vertebrates against the occlusion of a major artery (biological bypass). Here, collateral growth was induced using the first model for cerebral arteriogenesis, the 3-vessel occlusion (3-VO) rat model. (I) 3-VO resulted in a significant diameter increase within 7 days in the posterior cerebral artery (PCA) and posterior communicating artery (Pcom), classifying the region of interest. Immunhistological staining demonstrated proliferative activation and macrophage invasion, already 24h post 3-VO within the PCA, confirming the arteriogenic phenotype. Furthermore, activation of the PCA endothelium was detected within 3 days post 3-VO by scanning electron microscopy. (II) For analysing the molecular mechanism of cerebral arteriogenesis, collateral tissue from the growing PCA was selectively isolated. Here, 24h post 3-VO 164 genes were detected to be significantly deregulated. Analysis of molecular annotations and networks associated with differentially expressed genes revealed that expression patterns contain gene transcripts predominantly involved in proliferation, inflammation, and migration. Early-phase cerebral arteriogenesis is characterized by protease inhibitor expression and showed that protease inhibitors TIMP-1 and kininogen are molecular markers of early-phase cerebral arteriogenesis. In summary, this work characterizes morphological features and genomic profiles of growing collaterals in the brain and develops novel ideas for a therapeutic stimulation of arteriogenesis.
16

Role of shear stress in angiopoietin-2-dependent neovascularization: implications in occlusive vascular disease and atherosclerosis

Tressel, Sarah Lynne 06 March 2008 (has links)
Neovascularization, or the formation of blood vessels, is important in both normal physiological processes as well as pathophysiological processes. The main players in neovascularization, endothelial cells (EC), are highly influenced by hemodynamic shear stress and this may play an important role in neovascularization. Two typical types of shear stress found in the vascular system are a unidirectional laminar shear stress (LS) found in straight regions and a disturbed, oscillatory shear stress (OS) found at branches or curves. At the cellular level, LS is thought to promote EC quiescence whereas OS is thought to promote EC dysfunction. Oscillatory sheared EC are pro-proliferative, pro-migratory, and secrete growth factors, all functions important in neovascularization. There are several diseases that involve both disturbed shear stress and neovascularization, such as atherosclerosis, aortic valve disease, and occlusive vascular disease. In these pathophysiological scenarios fluid shear stress may provide a driving force for neovascularization. Therefore, we hypothesized that oscillatory shear stress promotes greater neovascularization compared to unidirectional laminar shear stress through the secretion of angiogenic factors, which play a physiological role in neovascularization in vivo. To test this hypothesis, we first performed tubule formation and migration assays, two important functions in neovessel formation. We found that OS promotes greater tubule formation and migration of EC as compared to LS and this was mediated through secreted factors. Using gene and protein array analysis, we identified Angiopoietin-2 (Ang2) as being upregulated by OS compared to LS in EC. We found that inhibiting Ang2 blocked OS-mediated tubule formation and migration and that LS-inhibited tubule formation could be rescued by addition of Ang2. In addition, Ang2 was found to be upregulated at sites of disturbed flow in vivo, implicating a physiological role for Ang2. To further investigate the physiological role of Ang2 in neovascularization, we examined the effects of inhibiting Ang2 in a mouse model of hindlimb ischemia, which involves both disturbed flow and neovascularization. We found that Ang2 was upregulated in the ischemic adductor muscle suggesting that it plays a role in recovery during hindlimb ischemia. In addition, we found that inhibiting Ang2 decreased blood flow recovery. Ang2 inhibition resulted in decreased smooth muscle cell coverage of vessels as well as decreased macrophage infiltration. These findings suggest that Ang2 promotes blood flow recovery through the recruitment of smooth muscle cells and formation of collaterals, as well as the recruitment of macrophages that secrete important growth factors and help degrade the extracellular matrix in order for neovascularization to occur. In conclusion, this work illustrates the shear stress regulation of neovessel formation through the expression of Ang2, and the role of Ang2 in neovascularization in vivo. By understanding how angiogenic factors are regulated and what role they play in vivo, we can better understand human disease and develop important therapeutic targets.
17

Major Collateral Vessels Develop from Pre-existing Small Arteries through RAC2/NOX2 Independent Mechanisms

DiStasi, Matthew Robert 18 March 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / There is no consensus on which vascular segment or what size of vessels is most important in the process of collateral growth, the degree to which these vessels can enlarge, or the mechanisms that mediate collateral vessel expansion and its impairment. Chapter I identifies the major collateral vessels that develop in response to femoral arterial occlusion in the pig, rat, and mouse hindlimbs for comparison to humans. Pre-existent small named arteries enlarged ~2-3-fold to become the major collateral vessels in each species, these major collaterals displayed characteristics similar to large arteries experiencing flow-mediated outward remodeling, and important differences in vascular wall thickness were observed between rodents and pigs. Chapter II utilized Rac2-/- and Nox2-/- mice to investigate the hypothesis that Nox2-NAD(P)H oxidase is required for major collateral growth subsequent to femoral arterial occlusion. Previous studies suggest bone marrow cell (BMC)-derived reactive oxygen species (ROS) produced by the Nox2 subunit of NAD(P)H oxidase plays an important role in neovascularization and recovery of hindlimb perfusion subsequent to femoral arterial occlusion; but did not investigate collateral growth. The hematopoietic cell restricted protein Rac2 has been shown to bind to and activate Nox2-NAD(P)H oxidase and Rac2-/- and Nox2-/- leukocytes display impaired ROS related functions. The data demonstrated that Rac2 and Nox2 are not essential for major collateral growth, but both are important for the recovery of hindlimb perfusion and preservation of distal tissue morphology. Chapter III investigated BMC and antioxidant therapy in the age-related impairment of collateral growth. Aging, like all cardiovascular disease risk factors is associated with elevated ROS and impaired collateral growth. Studies also suggest BMCs promote collateral growth by secreting paracrine factors but elevated ROS may affect the efficacy of BMCs. The data revealed that neither BMC injection nor antioxidant therapy via apocynin enhanced the process of major collateral artery growth in aged mice.
18

Endothelial Cell-Specific Knockout of Meis1 Protects Ischemic Hindlimb Through Vascular Remodeling

Chen, Miao 28 June 2018 (has links)
Peripheral artery disease (PAD) affects more than 200 million people worldwide. PAD refers to illness due to a reduction or complete occlusion of blood flow in the artery, especially to the extremities in disease conditions, such as atherosclerosis or diabetes. Critical limb ischemia (CLI) is a severe form of PAD associated with high morbidity and mortality. Currently, no effective and permanent treatments are available for this disease. The current endovascular medications (e.g., angioplasty or stents) only relieve the clinical symptoms while the surgical therapies (e.g., bypass or endarterectomy) require grafting vessels from a healthy organ to the diseased limb of the patient. However, even with these therapeutic techniques, 30% of patients still undergo limb amputation within a year. Thus, understanding of disease mechanism and development of new therapeutic approaches are in urgent needs. Meis1 (myeloid ecotropic viral integration site 1) gene belongs to the three-amino-acid loop extension subclass of homeobox gene families, and it is a highly conserved transcription factor in all eukaryotes. Up to date, little is known about the role of Meis1 in regulating vascular remodeling under ischemic condition. In this study, we aim to investigate the role and underlying mechanism of Meis1 in the regulation of arteriogenesis and angiogenesis using hindlimb ischemia model of transgenic neonatal mice. The long-term goal is to develop a new treatment for patients with PAD. Three separate but related studies were planned to complete the proposed research aims. To better understand the role of Meis1, we reviewed, in the first chapter, all literature relevant to the recent advances of the Meis1 in normal hematopoiesis, vasculogenesis, and heart developments, which were mostly studied in zebrafish and mouse. Briefly, Meis1 is found to be highly expressed in the brain and retina in zebrafish and additional in the heart, nose, and limb in mouse during the very early developmental stage, and remains at a low level quickly after birth. Meis1 is necessary for both primitive and definitive hematopoiesis and required for posterior erythroid differentiation. The absence of Meis1 results in a severe reduction of the number of mature erythrocytes and weakens the heart beats in zebrafish. Meis1 deficiency mouse is dead as early as E11.5 due to the severe internal hemorrhage. In addition, Meis1 is essential in heart development. Knock-down of Meis1 can promote angiotensin II-induced cardiomyocytes (CMs) hypertrophy or CMs proliferation, which can be repressed by a transcription factor Tbx20. Meis1 appears to play a complicated role in the blood vessels. Although the major blood vessels are still normal when global deletion of Meis1, the intersegmental vessel cannot be formed in Meis1 morphants in the zebrafish, and the small vessels are either too narrow or form larger sinuses in Meis1 deficient mouse. The effects of Meis1 on the vascular network under normal and disease (ischemia) condition remain largely unknown, and the existing data in this field is limited. In the second chapter, we developed a method protocol to identify mice of all ages, especially neonates that we faced methodological difficulties to easily and permanently label prior to our major experiments. In this study, single- or 2-color tattooing (ear, tail, or toe or combinations) was performed to identify a defined or unlimited number of mice, respectively. Tail tattooing using both green and red pastes was suitable for identifying white-haired neonatal mice as early as postnatal day (PND) 1, whereas toe tattooing with green paste was an effective alternative approach for labeling black-haired mouse pups. In comparison, single-color (green) or 2-color (green and red) ear tattooing identified both white and black adult mice older than three weeks. Ear tattooing can be adapted to labeling an unlimited number of adult mice by adding the cage number. Thus, tattooing various combinations of the ears, tail, and toes provides an easy and permanent approach for identifying mice of all ages with minimal disturbance to the animals, which shows a new approach than any existing method to identify mouse at all ages, especially the neonatal pups used in the present study (Chapter 4). Various formation of hindlimb ischemia with ligations of femoral artery or vein or both have been reported in the literature. The ischemic severity varies dependent on mouse strains and ligation methods. Due to the tiny body size of our experimental neonatal mice (PND2), it is technically challenging to separate the femoral artery from femoral vein without potential bleeding. In the third chapter, we aimed to explore a suitable surgical approach that can apply to neonatal mice. To this end, we compared the effects of femoral artery/vein (FAV) excision vs. femoral artery (FA) excision on hindlimb model using adult CD-1 mice. We showed during the 4-week period of blood reperfusion, no statistically significant differences were found between FAV and FA excision-induced ischemia regarding the reduction of limb blood flow, paw size, number of necrotic toes, or skeletal muscle cell size. We conclude that FAV and FA excision in CD-1 mice generate a comparable severity of hindlimb ischemia. In other words, FAV ligation is no more severe than FA ligation. These findings provide valuable information for researchers when selecting ligation methods for their neonate hindlimb models. Based on these findings, we selected FAV ligation of hindlimb ischemia approach to study the function of Meis1 in vascular remodeling of neonatal mice. In the fourth chapter (the main part of my dissertation), we investigated the roles of Meis1 in regulating arteriogenesis and angiogenesis of neonatal mouse under the ischemic condition. To this end, endothelial cell-specific deletion of Meis1 was generated by cross-breeding Meis1flox/flox mice with Tie2-Cre mice. Wild-type (WT, Meis1f/f) and endothelial cell-specific knock-out (KO, Meis1ec-/-Tie2-Cre+) C57BL/6 mice at the age of PND2 were used. Under the anesthesia, the pups were subject to hindlimb ischemia by excising FAV. Laser Doppler Imager was used to measure the blood flow pre- and post-surgery up to 28 days. Toe necrosis, skeletal regeneration, and vascular distributions were examined at the end of experiments (PND28 post-ischemia). Surprisingly, during 4-week periods after ischemia, the blood flow ratios (ischemic vs. control limb) in KO mice significantly increased compared to WT on PND14 and PND28, suggesting the inhibitory effects of Meis1 on blood flow recovery under ischemic condition. Meanwhile, WT mice showed more severe necrotic limb (lower ratio of limb length and area, and higher necrotic scores at PND7) than those in the KO mice. Furthermore, significant increases in diameters of Dil-stained arterioles of the skin vessel and the vessels on the ligation site were observed in KO mice, indicating the enhanced arteriogenesis in KO mice. To investigate the underlying mechanism, RNA from the ischemia and control limb was extracted and q-PCR was used to study the potential genes involved in the mechanism. Casp3 and Casp8 were found downregulated showing less apoptosis in the KO mice. On the other hand, endothelial cells (ECs) were isolated from the lungs of 3-5 WT and KO neonates using CD31 Microbeads. CD31+ cells were plated and treated with 0, 0.5, and 1μM doxorubicin for 24 hours and analyzed with various assays. Meis1-KO ECs demonstrated higher cell viability and formed a higher number of vascular tubes than those in WT ECs following 0.5μM Dox treatment, presenting the potential ability of angiogenesis in KO-ECs. Furthermore, the increased viability in KO ECs may be due to the decreased expression or activities of Casp8 and Casp3. In conclusion, my present studies have developed a new methodology to easily and permanently identify all mice at any ages. The insignificant differences between FAV and FA ligations suggest that a relative-easy surgical approach could be used to generate hindlimb ischemic model, which potentially reduces the cost, decreases the surgical time and prevents damage of femoral nerve from surgical tools. More importantly, by using transgenic mice, we found that Meis1-KO dramatically increased blood flow and protected the ischemic hindlimb through vascular remodeling. Obviously, the molecular and cellular mechanisms underlying the above beneficial effects appear complicated and likely to involve multiple cellular remodeling processes and molecular signaling pathways to enhance arteriogenesis and angiogenesis and/or reduce cellular apoptosis through Meis1-mediated pathways. Our study demonstrated that under ischemic condition, knockout of Meis1 increases expression of Hif1a, which then activates Agt or VEGF, thus enhances arteriogenesis or angiogenesis; In addition, knockout of Meis1 activates Ccnd1, which subsequently promotes regeneration of skeletal muscle, and reduces expression of Casp8 and Casp3, thus preventing limb tissue from ischemia-induced apoptosis. Our innovative findings offer great potential to ultimately lead to new drug discovery or therapeutic approaches for prevention or treatment of PAD. / PHD
19

Identificação da expressão do vascular endothelial growth factor (VEGF) pela contagem de células marcadas imunoistoquimicamente no omento de ratos após ligadura arterial e após ligadura venosa

Zart, Ronald Paulo Pinto January 2007 (has links)
O sistema cardiovascular está estrutural e funcionalmente disposto de modo “circular”. Situações de obstrução do fluxo sanguíneo determinam o aparecimento de mecanismos que visam suplantar tais interrupções e manter a circularidade íntegra. À nível molecular, o principal elemento envolvido nestes mecanismos é o Vascular Endothelial Growth Factor (VEGF). A expressão do VEGF quando há oclusão arterial está bem documentada, faltando elementos com relação à oclusão venosa. Neste estudo objetivamos verificar se a oclusão à nível arterial determina uma expressão do VEGF diferente daquela que ocorre se a oclusão acontecer à nível venoso. Para isso randomizamos dois grupos de ratos de experimentação. Em um grupo realizamos a oclusão da aorta infra-renal e em outro a oclusão da veia cava infra-renal. Posteriormente medimos a expressão do VEGF através da contagem do número de células marcadas imunoistoquimicamente no omento destes ratos. O resultado demonstrou que a expressão do VEGF, quando analisada pelo método proposto foi igual no grupo da oclusão venosa e no grupo da oclusão arterial. / The cardiovascular system is structurally and functionally circular. Situations in which there is obstruction to blood flow trigger mechanisms to bypass these blockages and maintenance the integrity of the circularity. At the molecular level the main factor involved is the Vascular Endothelial Growth Factor (VEGF). The VEGF expression associated with arterial occlusion is well documented but is lacking evidence when venous occlusion occurs. This study aimed to verify if the expression of VEGF when an occlusion occurs at venous level is the same or different from that caused at the arterial level. Two groups of rats were randomized by infra-renal aortic occlusion or inferior vena cava occlusion. VEGF was measured by counting the immunohistochemistry method marked cells at the omentum level. It was demonstrated that the VEGF expression is the same in the venous group obstruction as the arterial obstruction group.
20

Identificação da expressão do vascular endothelial growth factor (VEGF) pela contagem de células marcadas imunoistoquimicamente no omento de ratos após ligadura arterial e após ligadura venosa

Zart, Ronald Paulo Pinto January 2007 (has links)
O sistema cardiovascular está estrutural e funcionalmente disposto de modo “circular”. Situações de obstrução do fluxo sanguíneo determinam o aparecimento de mecanismos que visam suplantar tais interrupções e manter a circularidade íntegra. À nível molecular, o principal elemento envolvido nestes mecanismos é o Vascular Endothelial Growth Factor (VEGF). A expressão do VEGF quando há oclusão arterial está bem documentada, faltando elementos com relação à oclusão venosa. Neste estudo objetivamos verificar se a oclusão à nível arterial determina uma expressão do VEGF diferente daquela que ocorre se a oclusão acontecer à nível venoso. Para isso randomizamos dois grupos de ratos de experimentação. Em um grupo realizamos a oclusão da aorta infra-renal e em outro a oclusão da veia cava infra-renal. Posteriormente medimos a expressão do VEGF através da contagem do número de células marcadas imunoistoquimicamente no omento destes ratos. O resultado demonstrou que a expressão do VEGF, quando analisada pelo método proposto foi igual no grupo da oclusão venosa e no grupo da oclusão arterial. / The cardiovascular system is structurally and functionally circular. Situations in which there is obstruction to blood flow trigger mechanisms to bypass these blockages and maintenance the integrity of the circularity. At the molecular level the main factor involved is the Vascular Endothelial Growth Factor (VEGF). The VEGF expression associated with arterial occlusion is well documented but is lacking evidence when venous occlusion occurs. This study aimed to verify if the expression of VEGF when an occlusion occurs at venous level is the same or different from that caused at the arterial level. Two groups of rats were randomized by infra-renal aortic occlusion or inferior vena cava occlusion. VEGF was measured by counting the immunohistochemistry method marked cells at the omentum level. It was demonstrated that the VEGF expression is the same in the venous group obstruction as the arterial obstruction group.

Page generated in 0.0851 seconds