• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 180
  • 31
  • 25
  • 21
  • 16
  • 11
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 645
  • 645
  • 645
  • 135
  • 134
  • 124
  • 120
  • 107
  • 93
  • 85
  • 73
  • 71
  • 69
  • 58
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Sistemas de controle fuzzy neural e neural adaptativo destinados ao controle de pressão em rede de distribuição de água

Moura, Geraldo de Araújo 21 November 2016 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-05-30T13:07:14Z No. of bitstreams: 1 - Geraldo Moura -.pdf: 5891648 bytes, checksum: 9ca720ba25a16879f0da2a9a837d1f4b (MD5) / Made available in DSpace on 2017-05-30T13:07:14Z (GMT). No. of bitstreams: 1 - Geraldo Moura -.pdf: 5891648 bytes, checksum: 9ca720ba25a16879f0da2a9a837d1f4b (MD5) Previous issue date: 2016-11-21 / This work deals with pressure control in water distribution networks to promote the optimization of hydraulic loads in order to minimize water losses in the pipes and energy in the corresponding pumping system. Therefore, a neural fuzzy control system (NFCS) beyond the adaptive neural control system (ANCS) were developed. These control systems have been tested and evaluated on experimental bench. The neural fuzzy control system (NFCS) involves techniques of artificial neural network (ANN) and fuzzy logic. The adaptive neural control system (ANCS) used a ANN Perceptron type multilayer by backpropagation technique and gradient descent with Levenberg-Marquardt optimizer. The pressure control will be through the frequency inverter with frequency adjustments in real time, which will act on pump motor assembly installed in the trial bench hydraulic network. Control systems NFCS and ANCS, in this work, were confronted in order to promote a comparative analysis between controllers. The results showed that the ANCS reached a performance index greater than NFCS almost entirely. Finally it was added a logic filter to supervisory control and data acquisition system (SCADA) to make the ANCS able to alternately control the minimum pressure points from the distribution network of experimental bench. Both control systems, ANCS and NFCS were developed in programming environment LabVIEW® / Este trabalho tem como objetivo o controle de pressão em redes de distribuição de água, a fim promover a otimização das cargas hidráulicas, buscando minimizar as perdas de água nas tubulações e de energia no correspondente sistema de bombeamento. Para tanto foram elaborados um sistema de controle fuzzy neural (SCFN) e um sistema de controle neural adaptativo (SCNA). Esses sistemas de controle foram testados e avaliados em uma bancada experimental. O sistema de controle fuzzy neural (SCFN) envolve técnicas de rede neural artificial (RNA) e lógica fuzzy. O sistema de controle neural adaptativo (SCNA) utilizou uma RNA do tipo Perceptron de múltiplas camadas, através da técnica de retropropagação (backpropagation) e gradiente descendente com otimizador de Levenberg-Marquardt. O controle de pressão é realizado através do conversor de frequência, com ajustes da frequência, em tempo real (on-line), que atuará sobre conjunto motor bomba (CMB) instalado na rede hidráulica da bancada experimental. Os sistemas de controle SCFN e o SCNA, apresentados neste trabalho, foram confrontados a fim de promover uma análise comparativa entre os controladores. Os resultados demonstraram que o SCNA apresentou especificações superiores ao SCFN em quase sua totalidade. Finalmente foi acrescentado um filtro lógico ao SCADA (supervisory control system and data acquisition) para tornar o SCNA capaz de controlar alternadamente a pressão mínima dentre pontos da rede de distribuição da bancada experimental. Ambos os sistemas de controle, SCFN e SCNA foram desenvolvidos em ambiente de programação LabVIEW®.
392

Sistema inteligente para estimar a porosidade em sedimentos a partir da an?lise de sinais GPR

Ara?jo, Eduardo Henrique Silveira de 25 January 2013 (has links)
Made available in DSpace on 2014-12-17T14:09:15Z (GMT). No. of bitstreams: 1 EduardoHSA_TESE3red.pdf: 5316067 bytes, checksum: 9b841153bb325e14b32dc463a70e5a45 (MD5) Previous issue date: 2013-01-25 / This Thesis presents the elaboration of a methodological propose for the development of an intelligent system, able to automatically achieve the effective porosity, in sedimentary layers, from a data bank built with information from the Ground Penetrating Radar GPR. The intelligent system was built to model the relation between the porosity (response variable) and the electromagnetic attribute from the GPR (explicative variables). Using it, the porosity was estimated using the artificial neural network (Multilayer Perceptron MLP) and the multiple linear regression. The data from the response variable and from the explicative variables were achieved in laboratory and in GPR surveys outlined in controlled sites, on site and in laboratory. The proposed intelligent system has the capacity of estimating the porosity from any available data bank, which has the same variables used in this Thesis. The architecture of the neural network used can be modified according to the existing necessity, adapting to the available data bank. The use of the multiple linear regression model allowed the identification and quantification of the influence (level of effect) from each explicative variable in the estimation of the porosity. The proposed methodology can revolutionize the use of the GPR, not only for the imaging of the sedimentary geometry and faces, but mainly for the automatically achievement of the porosity one of the most important parameters for the characterization of reservoir rocks (from petroleum or water) / Esta tese apresenta a elabora??o de uma proposta metodol?gica para o desenvolvimento de um sistema inteligente, capaz de obter automaticamente a porosidade efetiva, em camadas sedimentares, a partir de um banco de dados constru?do com informa??es do Radar de Penetra??o no Solo (Ground Penetrating Radar GPR). O sistema inteligente foi constru?do para modelar a rela??o entre a porosidade (vari?vel resposta) e os atributos eletromagn?ticos do GPR (vari?veis explicativas). Com ele foi estimada a porosidade utilizando modelo de rede neural artificial (Multilayer Perceptron - MLP) e regress?o linear m?ltipla. Os dados da vari?vel resposta e das vari?veis explicativas foram obtidos em laborat?rio e em levantamentos GPR delineados em s?tios controlados em campo e laborat?rio. O sistema inteligente proposto possui a capacidade de estimar a porosidade a partir de qualquer banco de dados dispon?vel, que envolvam as mesmas vari?veis utilizadas nesta tese. A arquitetura da rede neural utilizada pode ser modificada de acordo com a necessidade existente, adequando-se aos bancos de dados dispon?veis. A utiliza??o do Modelo de Regress?o Linear M?ltipla permitiu que fosse identificada e quantificada a influ?ncia (grau de efeito) de cada vari?vel explicativa na estimativa da porosidade. A metodologia proposta pode revolucionar o uso do GPR por permitir, n?o apenas o imageamento das geometrias e f?cies sedimentares, mas principalmente a obten??o autom?tica da porosidade um dos par?metros mais importantes na caracteriza??o de rochas reservat?rios (petrol?feros ou aqu?feros)
393

Implementação em hardware de um sistema inteligente para detecção de plantas daninhas em plantações de soja utilizando máquinas de vetores de suporte e redes neurais artificiais

Caldas Júnior, Carlos Roberto Dutra [UNESP] 02 August 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-02Bitstream added on 2014-06-13T18:39:28Z : No. of bitstreams: 1 caldasjunior_crd_me_sjrp.pdf: 669834 bytes, checksum: bb1a2044c8a20046b364cf6e0b7141cb (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A presença de sistemas automatizados é cada vez mais comum para as pessoas. Seus exemplos vão desde máquinas de lavar, que executam praticamente todo o processo de lavagem e secagem de roupas, até linhas de produção em fábricas dos mais diversos produtos. Esses são exemplos de aplicações que exigem pouca interferência humana no processo, já que as etapas realizadas pelos sistemas são bem definidas e iterativas. Porém, outros tipos de processos podem exigir capacidade de discernimento daquele – ou daquilo – que os executam. Para automatizar esse tipo de processo uma das alternativas é o uso de técnicas de inteligência artificial. Esse trabalho visa realizar uma análise comparativa entre técnicas de inteligência artificial, quais sejam Redes Neurais Artificiais e Máquinas de Vetores de Suporte. Com essa análise espera-se estabelecer qual técnica é mais vantajosa para implementação em hardware de sistemas inteligentes, por meio do uso das principais métricas de projeto de circuitos digitais: tamanho do circuito gerado, consumo de energia e desempenho. Para tanto, foram realizados diversos testes com técnicas de pré-processamento e extração de características das imagens para determinar requisitos necessários para o funcionamento do sistema. A partir desses requisitos foram implementadas diversas arquiteturas de sistemas inteligentes para obter-se o classificador mais adequado para resolver o problema. Por fim, o classificador escolhido foi implementado em FPGA na forma de um módulo, o qual se integrará a um sistema maior, para interpretação de imagens digitais para detecção de ervas daninhas em plantações de soja / Automated systems have become common for people. Examples range from washing machines, which perform almost the entire cloth washing and drying process, to the production of many products. These are examples of applications that require modest human interference, since the steps taken by the systems are well defined and iterative. However, other processes may require a capacity of judgment of the natural or artificial system performing them. An alternative to automate this kind of process is the use of artificial intelligence techniques. This study aims at a comparative analysis of artificial intelligence techniques, namely Artificial Neural Networks and Support Vector Machines. With this analysis we hope to establish which technique is more advantageous for hardware implementation of an intelligent system, through the use of key metrics for digital circuit design: circuit size, power consumption and performance. Therefore, several tests were performed with image preprocessing and feature extraction techniques to determine requirements for system operation. From these requirements, various architectures for intelligent systems were implemented to obtain the most appropriate classifier to solve the problem. Finally, the chosen classifier was implemented in FPGA as a module to fit into a larger system for digital image interpretation for the detection of weeds in crops of soybeans
394

Sistema inteligente baseado nas redes neurais artificiais para dosagem do concreto /

Moretti, José Fernando. January 2010 (has links)
Resumo: O concreto é o material estrutural mais utilizado na construção civil. Há mais de um século e meio ele vem sendo estudado e aperfeiçoado. É confeccionado utilizando-se de matérias primas regionais, com características técnicas diferentes de outras regiões. O cimento também se apresenta com diversas formulações. Quantificar adequadamente esses materiais é o objetivo do estudo da dosagem do concreto, de tal modo a se obter um concreto que atenda às necessidades estruturais exigidas. Sendo a principal delas a resistência à compressão. A dosagem do concreto é uma prática essencialmente laboratorial quando se pensa em resultados aceitáveis. Através de experimentos são idealizados ábacos e diagramas que podem fornecer a resistência do concreto endurecido com diversas combinações de matérias primas utilizadas. Não há uma formulação matemática abrangente e bem definida para um processo generalizado de dosagem. A complexidade aumenta quando se adicionam outros componentes a mais no concreto simples e tradicional. Obter a relação entre eles é um trabalho contínuo. As redes neurais vêm sendo utilizadas na solução de problemas da engenharia civil, com ênfase na aplicação da técnica da retropropagação. Ela realiza satisfatoriamente as iterações entre as diversas variáveis, num processo de treinamento e aprendizagem, e tem sido capaz de generalizar soluções aceitáveis. Nesta pesquisa de doutorado é utilizada uma rede neural feedfoward com algoritmo retropropagação para prever a resistência e o módulo de elasticidade do concreto. Os dados de entrada são quantidades de materiais utilizadas para confeccionar 1 m3 de concreto adensado, de forma semelhante a dosagem por diagramas. Será aplicada na interpretação de diagramas de dosagem. Tais diagramas são amplamente utilizados por empresas na confecção de concretos,... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Concrete is the most widely used structural material in construction, for more than a century and a half it has been studied and improved. It's prepared using regional raw materials with different technical characteristics of other regions. The cement also performs with various formulations. Adequately quantify these materials is the goal of the study of the concrete mixtures proportion, to obtain a concrete that meets the structural needs required. The main one being the compressive strength. The strength of concrete is essentially a practice laboratory when one considers acceptable results. Through experiments are idealized abacus and diagrams that can provide the strength of hardened concrete with various combinations of raw materials used. There is no mathematical formulation of comprehensive and well defined for a generalized process of mixes. The complexity increases when other components is added in the most simple and traditional concrete. Obtain the relationship between them is a work in progress. Neural networks have been used in solving engineering problems, with emphasis on applying the technique of backpropagation. It performs satisfactorily iterations between the different variables in a process of training and learning, and has been able to generalize acceptable solutions. In this work is used a feedforward neural network with backpropagation algorithm to predict the compressive strength and modulus of elasticity of the concrete. The input data are quantities of materials used to fabricate 1,0 m3 of concrete hardened, similar dosing for diagrams and abacus. Such diagrams are widely used by companies in the manufacturing of concrete, yielding good precision in the final results. They are produced on the vast experience with the same materials and are highly regional representative to provide subsidies for training neural networks. This... (Complete abstract click electronic access below) / Orientador: Carlos Roberto Minussi / Coorientador: Jorge Luís Akasaki / Banca: Anna Diva Plasencia Lotufo / Banca: Marco Antonio Morais Alcantara / Banca: David Calhau Jorge / Banca: Cesar Fabiano Fioriti / Doutor
395

Comparação entre as redes neurais artificiais e o método de interpolação krigagem aplicados à pesquisa agronômica /

Vilela, Letícia Colares. January 2004 (has links)
Orientador: Angelo Cataneo / Banca: Célia Regina Lopes Zimback / Banca: Jorim Sousa das Virgens Filho / Banca: Luiz Roberto Almeida Gabriel / Banca: José Fernando Mantovani Micali / Doutor
396

Din?mica da Plasticidade Sin?ptica em neur?nios do hipocampo durante ciclos de sono: um estudo computacional

Figuerola, Wilfredo Blanco 26 March 2012 (has links)
Made available in DSpace on 2014-12-17T14:55:05Z (GMT). No. of bitstreams: 1 WilfredoBF_TESE.pdf: 4144764 bytes, checksum: ae0670814eb6793d7e5af7d0973a9f65 (MD5) Previous issue date: 2012-03-26 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Several research lines show that sleep favors memory consolidation and learning. It has been proposed that the cognitive role of sleep is derived from a global scaling of synaptic weights, able to homeostatically restore the ability to learn new things, erasing memories overnight. This phenomenon is typical of slow-wave sleep (SWS) and characterized by non-Hebbian mechanisms, i.e., mechanisms independent of synchronous neuronal activity. Another view holds that sleep also triggers the specific enhancement of synaptic connections, carrying out the embossing of certain mnemonic traces within a lattice of synaptic weights rescaled each night. Such an embossing is understood as the combination of Hebbian and non-Hebbian mechanisms, capable of increasing and decreasing respectively the synaptic weights in complementary circuits, leading to selective memory improvement and a restructuring of synaptic configuration (SC) that can be crucial for the generation of new behaviors ( insights ). The empirical findings indicate that initiation of Hebbian plasticity during sleep occurs in the transition of the SWS to the stage of rapid eye movement (REM), possibly due to the significant differences between the firing rates regimes of the stages and the up-regulation of factors involved in longterm synaptic plasticity. In this study the theories of homeostasis and embossing were compared using an artificial neural network (ANN) fed with action potentials recorded in the hippocampus of rats during the sleep-wake cycle. In the simulation in which the ANN did not apply the long-term plasticity mechanisms during sleep (SWS-transition REM), the synaptic weights distribution was re-scaled inexorably, for its mean value proportional to the input firing rate, erasing the synaptic weights pattern that had been established initially. In contrast, when the long-term plasticity is modeled during the transition SWSREM, an increase of synaptic weights were observed in the range of initial/low values, redistributing effectively the weights in a way to reinforce a subset of synapses over time. The results suggest that a positive regulation coming from the long-term plasticity can completely change the role of sleep: its absence leads to forgetting; its presence leads to a positive mnemonic change / Diversas linhas de pesquisa demonstram que o sono favorece a consolida??o de mem?rias e o aprendizado. Tem sido proposto que o papel cognitivo do sono deriva de um redimensionamento global dos pesos sin?pticos, capaz de restabelecer homeostaticamente a capacidade de aprender coisas novas, apagando mem?rias durante a noite. Tal fen?meno seria t?pico do sono de ondas lentas ( slow wave sleep , SWS) e caracterizado por mecanismos n?o-Hebbianos, isto ?, independentes da atividade neuronal sincr?nica. Outra abordagem postula que o sono desencadeia tamb?m um realce de conex?es sin?pticas espec?ficas, levando a um entalhamento de certos tra?os mnem?nicos no ?mbito de uma matriz de pesos sin?pticos redimensionados a cada noite. Tal entalhamento ? entendido como a combina??o de mecanismos Hebbianos e n?o-Hebbianos, capazes respectivamente de aumentar e diminuir os pesos sin?pticos em circuitos complementares, levando ? melhoria seletiva de mem?rias e a uma reestrutura??o da configura??o sin?ptica ( synaptic configuration , SC) que pode ser crucial para a gera??o de novos comportamentos ( insights ). Os achados emp?ricos indicam que a indu??o de plasticidade Hebbiana durante o sono acontece na transi??o do SWS para o est?gio de movimento r?pido dos olhos ( rapid eye movement , REM), possivelmente devido ?s grandes diferen?as entre os regimes das taxas de disparos entre os estados e ? regula??o positiva de fatores envolvidos na plasticidade sin?ptica de longo prazo. Neste estudo, as teorias da homeostase e do entalhamento foram comparadas usando uma rede neural artificial ( artificial neural network , ANN) alimentada com potenciais de a??o registrados no hipocampo de ratos durante todo o ciclo sono-vig?lia. Na simula??o em que a ANN n?o aplicou mecanismos de plasticidade de longo prazo durante o sono (transi??o SWS-REM), a distribui??o pesos sin?pticos foram inexoravelmente re-escalada para uma media proporcional ? taxa de disparo das entradas, apagando eventualmente o padr?o de pesos sin?pticos inicialmente estabelecido. Em contraste, quando a plasticidade de longo prazo foi modelada durante a transi??o SWS-REM, o aumento dos pesos sin?pticos foi observado em toda a gama de valores iniciais, efetivamente redistribuindo os pesos de modo a refor?ar um subconjunto de sinapses ao longo do tempo. Os resultados sugerem que uma regula??o positiva proveniente da plasticidade de longo prazo pode alterar completamente o papel do sono: sua aus?ncia leva ao esquecimento, sua presen?a leva a uma mudan?a mnem?nica positiva
397

Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural

Linhares, Leandro Luttiane da Silva 19 March 2010 (has links)
Made available in DSpace on 2014-12-17T14:55:42Z (GMT). No. of bitstreams: 1 LeandroLSL_DISSERT.pdf: 1890433 bytes, checksum: 540cbd4cf39fb3515249b7cecd6d0dcc (MD5) Previous issue date: 2010-03-19 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study / Nos dias atuais, em que a concorr?ncia de mercado exige produtos de melhor qualidade e a busca constante pela redu??o de custos e pelo melhor aproveitamento das mat?rias-primas, a utiliza??o de estrat?gias de controle mais eficientes torna-se fundamental. Nas Unidades de Processamento de G?s Natural (UPGNs), assim como na maioria dos processos qu?micos, o controle de qualidade ? realizado a partir da composi??o de seus produtos. Entretanto, a an?lise de composi??es qu?micas, mesmo quando realizada por equipamentos como os cromat?grafos a g?s, apresenta longos intervalos de medi??o. Esse fato dificulta a elabora??o de estrat?gias de controle que proporcionem um melhor rendimento do processo. Geralmente, o principal produto econ?mico de uma UPGN ? o GLP (G?s Liquefeito de Petr?leo). Outros produtos comumente obtidos nessas unidades s?o a gasolina natural e o g?s residual. O GLP ? formado idealmente por propano e butano. Entretanto, na pr?tica, apresenta em sua composi??o contaminantes, tais como o etano e o pentano. Neste trabalho ? proposto um sistema de infer?ncia utilizando redes neurais para estimar as fra??es molares de etano e pentano no GLP e a fra??o molar de propano no g?s residual. O objetivo ? estimar essas vari?veis a cada minuto com uma ?nica rede neural de m?ltiplas camadas, permitindo a aplica??o de t?cnicas de controle inferencial visando a controlar a qualidade do GLP e reduzir a perda de propano no processo. No desenvolvimento deste trabalho, ? simulada no software HYSYS R uma UPGN formada por uma coluna de destila??o deetanizadora e outra debutanizadora. A infer?ncia ? realizada a partir das vari?veis de processo de alguns controladores PID presentes na instrumenta??o das colunas citadas. Com o intuito de reduzir a complexidade da rede neural de infer?ncia, ? utilizada a t?cnica estat?stica de an?lise de componentes principais (ACP) para diminuir o n?mero de entradas da rede. Tem-se, portanto, um sistema h?brido de infer?ncia. Tamb?m ? proposta neste trabalho, uma estrat?gia simples para a corre??o em tempo real do sistema de infer?ncia, tendo como base as medi??es dos poss?veis cromat?grafos de linha presentes no processo em estudo
398

Desenvolvimento de uma arquitetura em hardware prototipada em FPGA para aplica??es gen?ricas utilizando redes neurais artificiais embarcadas

Prado, Rafael Nunes de Almeida 22 February 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:47Z (GMT). No. of bitstreams: 1 RafaelNAP_DISSERT.pdf: 1349793 bytes, checksum: 6843077c7952b1e58788ef395d9822e6 (MD5) Previous issue date: 2011-02-22 / This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems / Prop?e uma arquitetura em hardware, descrita em VHDL, desenvolvida para embarque de redes neurais artificiais, do tipo Multilayer Perceptron (MLP). Idealiza que, nessa arquitetura, as aplica??es com RNA tenham facilidade no procedimento de embarque de uma rede neural MLP em hardware, bem como permitam f?cil configura??o de v?rios tipos de redes MLP em campo, com diferentes topologias (quantidade de neur?nios e camadas). Uma rede de comunica??o foi desenvolvida para fazer reuso de neur?nios artificiais. A defini??o da arquitetura MLP que o sistema proposto ir? se configurar e executar depende de uma entrada de dados espec?fica, a qual define a quantidade de neur?nios, camadas e tipos de fun??es de ativa??o em cada neur?nio. Para permitir essa maleabilidade de configura??es nas RNA, um conjunto de componentes digitais (datapath) e um controlador foram desenvolvidos para executar instru??es que definir?o a arquitetura da rede MLP. Desta forma, o hardware funcionar? a partir de uma entrada de instru??es previamente conhecidas por um usu?rio, as quais indicar?o as caracter?sticas de uma determinada rede MLP, e o sistema ir? garantir a execu??o da MLP desejada a partir dos neur?nios artificiais desenvolvidos para o sistema, pelo controlador e pelos componentes do datapath, a rede de comunica??o interligar? os neur?nios e auxilia no reuso dos mesmos. Separadamente, os pesos e bias ter?o de estar fixos, ou seja, a rede neural a ser embarcada j? deve estar treinada de maneira off-line (realizada antecipadamente em software). A arquitetura vislumbra que o operador n?o necessite conhecer o dispositivo internamente, nem tampouco ter conhecimento sobre linguagem VHDL. O dispositivo reconfigur?vel e de prototipagem r?pida FPGA foi escolhido para implementa??o, simula??o e testes oportunizando aplicar o sistema a problemas reais do nosso cotidiano
399

Utiliza??o de redes neurais artificiais para detec??o e diagn?stico de falhas

Rebou?as, Diogo Leite 21 June 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:50Z (GMT). No. of bitstreams: 1 DiogoLR_DISSERT.pdf: 2166475 bytes, checksum: 3d70392d30b6b18a8ab0f79aa206e435 (MD5) Previous issue date: 2011-06-21 / In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab? / Em um processo real, todos os recursos utilizados, sejam f?sicos ou desenvolvidos em software, est?o sujeitos a interrup??es ou a comprometimentos operacionais. Contudo, nas situa??es em que operam os sistemas cr?ticos, qualquer tipo de problema pode vir a trazer grandes consequ?ncias. Sabendo disso, este trabalho se prop?e a desenvolver um sistema capaz de detectar a presen?a e indicar os tipos de falhas que venham a ocorrer em um determinado processo. Para implementa??o e testes da metodologia proposta, um sistema de tanques acoplados foi escolhido como modelo de estudo de caso. O sistema desenvolvido dever? gerar um conjunto de sinais que notifiquem o operador do processo e que possam vir a ser p?s-processados, possibilitando que sejam feitas altera??es nas estrat?gias ou nos par?metros dos controladores. Em virtude dos riscos envolvidos com rela??o ? queima dos sensores, atuadores e amplificadores existentes na planta real, o conjunto de dados das falhas ser? gerado computacionalmente e os resultados coletados a partir de simula??es num?ricas do modelo do processo, n?o havendo risco de dano aos equipamentos. O sistema ser? composto por estruturas que fazem uso de Redes Neurais Artificiais, treinadas em modo offline pelo software matem?tico Matlab?
400

Prédire la chute de la personne âgée : apports des modèles mathématiques non-linéaires / Predicting of falls in the elderly : using of non-linear of mathematical models

Kabeshova, Anastasiia 14 October 2015 (has links)
En 2015, la chute de la personne âgée reste toujours un événement majeur, quel que soit l’angle de vue considéré. Elle est toujours associée à une forte morbi-mortalité, nombreuses incapacités, altération la qualité de vie du chuteur, mais aussi, en raison du vieillissement de la population, avec le nombre croissant de chuteurs requérant une prise en charge médicale. Cette situation repose en bonne partie sur notre incapacité à identifier la personne âgée qui est le plus à risque de chute, cette étape étant la première de toute stratégie d’intervention efficace et efficiente. Il est donc nécessaire voir obligatoire aujourd’hui de redoubler nos efforts sur l’amélioration de la prédiction de la chute. En contrepartie de nouvelles opportunités s’ouvrent à nous en raison de l’implantation et de l’informatisation des données médicales. La chute doit être considérée comme un événement chaotique et sa prédiction doit se faire via de nouveaux modèles mathématiques intégrant la particularité de ce comportement. C’est pour cette raison que des méthodes d’analyse basée sur l'intelligence artificielle semblent être une solution appropriée. C’est à partir de ce constat que nous avons émis l’hypothèse que les modèles mathématiques issus de l’intelligence artificielle devaient permettre d’atteindre une qualité de la prédiction meilleure. L’objectif principal de cette thèse est d’étudier la qualité de la prédiction de la chute, récurrente ou non, chez des personnes âgées de 65 ans et plus, en utilisant les réseaux neuronaux et un modèle de logique floue, en les comparant avec des modèles mathématiques linéaires utilisés classiquement dans la littérature. L’ensemble de nos résultats confirme notre hypothèse de départ en montrant que le choix du modèle mathématique influence la qualité de la prédiction de la chute, les modèles non linéaires, et notamment les réseaux neuronaux et les systèmes de logique flous, étant plus performants que les modèles linéaires pour la prédiction des chutes surtout lorsqu’elles sont récurrentes. / Falls in the elderly are still a major issue in 2015 because they are associated with high rate of morbidity, mortality and disability, which affect the quality of life. From the patient’s perspective, it is still associated with high morbidity, mortality and disability, which affect the quality of life. The number of fallers requiring medical and/or social care is growing up due to aging population. This fact seems paradoxical since during the recent years the knowledge about the mechanisms of falls and the quality of interventions to support fallers significantly increased. This is largely based on our inability to predict correctly the risk of falling among the elderly person, knowing that this is the first step of any efficient and effective intervention strategies. Therefore it is necessary today to double our efforts in improving the prediction of falls. Nonetheless, new opportunities and advanced technologies provide to us the possibility of computerizing of medical data and research, and also to improve prediction of falls using new approaches. A fall should be considered as a chaotic event, and its prediction should be done via new mathematical models incorporating the feature of this behaviour. Thus, the methods ofartificial intelligence-based analysis seem to be an appropriate solution to analyse complex medical data. These artificial intelligence techniques have been already used in many medical areas, but rarely in the field of fall prediction. Artificial neural networks are the most commonly used methods while other promising techniques based on fuzzy logic are less often applied.Based on this observation we have formulated the hypothesis that non-linear mathematical models using artificial intelligence are the models, which are the most likely to achieve the bestquality of the prediction. The main objective of this thesis is to study the quality of theprediction of falls, recurrent or not, among the adults aged 65 years and more,applying neuralnetworks and fuzzy logic models, and comparing them either among themselves or with the linear mathematical models conventionally employed in the literature for fall prediction. The first cross-sectional study was conducted by using a decision tree to explore the risk of recurrent falls in various combinations of fall risk factors compared to a logistic regression model. The second study was designed to examine the efficiency of artificial neural networks (Multilayer Perceptron and Neuroevolution of Augmenting Topologies) to classify recurrent and nonrecurrent fallers by using a set of clinical characteristics corresponding to risk factors measured among seniors living in the community. Finally, in the third study we compared the results of different statistical methods (linear and nonlinear) in order to identify the risk of falls using 7 clinical variables, separating the collection mode (retrospective and prospective) of the fall and its recurrence. The results confirm our hypothesis showing that the choice of the mathematical model affects the quality of fall prediction. Nonlinear models, such as neural networks and fuzzy logic systems, are more efficient than linear models for the prediction of falls especially for recurrent falls. However, the results show that the balance between different criteria used to judge the quality of the forecast (sensitivity, specificity, positive and negative predictive value, area under the curve, positive and negative likelihood ratio, and accuracy) has not been always correct, emphasizing the need to continue the development of the models whose intelligence should specifically predict the fall.

Page generated in 0.3747 seconds