• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 336
  • 39
  • 21
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1193
  • 1193
  • 1193
  • 570
  • 554
  • 421
  • 157
  • 134
  • 129
  • 128
  • 120
  • 110
  • 94
  • 93
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

An application of artificial neural networks in freeway incident detection [electronic resource] / by Sujeeva A. Weerasuriya.

Weerasuriya, Sujeeva A. January 1998 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 139 pages. / Thesis (Ph.D.)--University of South Florida, 1998. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Non-recurring congestion caused by incidents is a major source of traffic delay in freeway systems. With the objective of reducing these traffic delays, traffic operation managers are focusing on detecting incident conditions and dispatching emergency management teams to the scene quickly. During the past few decades, a few number of conventional algorithms and artificial neural network models were proposed to automate the process of detecting incident conditions on freeways. These algorithms and models, known as automatic incident detection methods (AIDM), have experienced a varying degree of detection capability. Of these AIDMs, artificial neural network-based approaches have illustrated better detection performance than the conventional approaches such as filtering techniques, decision tree method, and catastrophe theory. So far, a few neural network model structures have been tested to detect freeway incidents. / ABSTRACT: Since the freeway incidents directly affect the freeway traffic flow, majority of these models have used only traffic flow variables as model inputs. However, changes in traffic flow may also be stimulated by the other features (e.g., freeway geometry) to a greater extent. Many AIDMs have also used a conventional detection rate as a performance measure to assess the detection capability. Yet the principle function of incident detection model, which is to identify whether an incident condition exists for a given traffic pattern, is not measured in its entirety by this conventional measure. In this study, new input feature sets, including freeway geometry information, were proposed for freeway incident detection. Sixteen different artificial neural network (ANN) models based on feed forward and recurrent architectures with a variety of input feature sets were developed. ANN models with single and double hidden layers were investigated for incident detection performance. / ABSTRACT: A modified form of a conventional detection rate was introduced to capture full capability of AIDMs in detecting incident patterns in the freeway traffic flow. Results of this study suggest that double hidden layer networks are better than single hidden layer networks. The study has demonstrated the potential of ANNs to improve the reliability using double layer networks when freeway geometric information is included in the model. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
202

Sensor Validation Using Linear Parametric Models, Artificial Neural Networks and CUSUM / Sensorvalidering medelst linjära konfektionsmodeller, artificiella neurala nätverk och CUSUM

Norman, Gustaf January 2015 (has links)
Siemens gas turbines are monitored and controlled by a large number of sensors and actuators. Process information is stored in a database and used for offline calculations and analyses. Before storing the sensor readings, a compression algorithm checks the signal and skips the values that explain no significant change. Compression of 90 % is not unusual. Since data from the database is used for analyses and decisions are made upon results from these analyses it is important to have a system for validating the data in the database. Decisions made on false information can result in large economic losses. When this project was initiated no sensor validation system was available. In this thesis the uncertainties in measurement chains are revealed. Methods for fault detection are investigated and finally the most promising methods are put to the test. Linear relationships between redundant sensors are derived and the residuals form an influence structure allowing the faulty sensor to be isolated. Where redundant sensors are not available, a gas turbine model is utilized to state the input-output relationships so that estimates of the sensor outputs can be formed. Linear parametric models and an ANN (Artificial Neural Network) are developed to produce the estimates. Two techniques for the linear parametric models are evaluated; prediction and simulation. The residuals are also evaluated in two ways; direct evaluation against a threshold and evaluation with the CUSUM (CUmulative SUM) algorithm. The results show that sensor validation using compressed data is feasible. Faults as small as 1% of the measuring range can be detected in many cases.
203

Utilizing symmetry in evolutionary design

Valsalam, Vinod K. 13 December 2010 (has links)
Can symmetry be utilized as a design principle to constrain evolutionary search, making it more effective? This dissertation aims to show that this is indeed the case, in two ways. First, an approach called ENSO is developed to evolve modular neural network controllers for simulated multilegged robots. Inspired by how symmetric organisms have evolved in nature, ENSO utilizes group theory to break symmetry systematically, constraining evolution to explore promising regions of the search space. As a result, it evolves effective controllers even when the appropriate symmetry constraints are difficult to design by hand. The controllers perform equally well when transferred from simulation to a physical robot. Second, the same principle is used to evolve minimal-size sorting networks. In this different domain, a different instantiation of the same principle is effective: building the desired symmetry step-by-step. This approach is more scalable than previous methods and finds smaller networks, thereby demonstrating that the principle is general. Thus, evolutionary search that utilizes symmetry constraints is shown to be effective in a range of challenging applications. / text
204

Νευρωνικά δίκτυα και μηχανές διανυσματικής υποστήριξης / Neural networks and support vector machines

Κυρίτσης, Κωνσταντίνος 01 October 2014 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι η σύγκριση δύο μεγάλων κατηγοριών, των Τεχνητών Νευρωνικών Δικτύων και των πολύ δημοφιλείς τα τελευταία χρόνια, Μηχανών Διανυσματικής Υποστήριξης (SVMs) στην Κατηγοριο-ποίηση δεδομένων και στην Παλινδρόμηση. Στο πρώτο κεφάλαιο έχουν γραφτεί θέματα σχετικά με την Εξόρυξη γνώσης και την Κατηγοριοποίηση δεδομένων, το δεύτερο κεφάλαιο προσεγγίζει αρκετά θέματα από το τεράστιο κεφάλαιο των Νευρωνικών Δικτύων. Αναλύει το λόγο που δημιουργή-θηκαν, το θεωρητικό τους μέρος, αρκετές από τις τοπολογίες τους – αρχιτεκτονικές τους και τέλος τις ανάγκες που δημιουργήθηκαν μέσα από τα πλεονεκτήματά και τα μειονεκτήματα τους, για ακόμη καλύτερα αποτελέσματα. Το τρίτο κεφάλαιο ασχολείται με τις Μηχανές Διανυσματικής Υποστήριξης, για πιο λόγο είναι τόσο δημοφιλείς, πως υλοποιούνται θεωρητικά και γεωμετρικά, τι πετυχαίνουν, τα πλεονεκτήματά και τα μειονεκτήματα τους. Το τέταρτο κεφάλαιο προσπαθεί μέσα από πειραματικά αποτελέσματα να συγκρίνει τα Τεχνητά Νευρωνικά Δίκτυα με τα SVMs με πραγματικά σύνολα δεδομένων (πρότυπα ή στιγμιότυπα), ποιοί δείκτες είναι αυτοί που θα μας δώσουν τελικά ποιος κατηγοριοποιητής είναι συνολικά καλύτερος; Όταν λέμε καλύτερος είναι αυτός που είναι πιο ακριβής ή πιο γρήγορος ή κάτι ενδιάμεσο; Το πέμπτο κεφάλαιο μας εξηγεί τι είναι παλινδρόμηση και συγκρίνει κύριους αλγορίθμους από τα Τεχνητά Νευρωνικά Δίκτυα και των Μηχανών Διανυσματικής Υποστήριξης. Στο έκτο κεφάλαιο και στα πλαίσια της διπλωματικής εργασίας υλοποίησα μία εφαρμογή σε Java, η οποία κάνει ταξινόμηση και παλινδρόμηση σε δεδομένα από αρχεία arff. Επικεντρώνεται μόνο στην ταξινόμηση και την παλινδρόμηση ενώ αυτό που το κάνει διαφορετικό από το Weka είναι η πρόβλεψη (Prediction) στο οποίο μπορούμε εμείς να δώσουμε κάποιο στιγμιότυπο και η εφαρμογή να μας κάνει πρόβλεψη για αυτό. Τέλος ακολουθούν ο επίλογος, τα παραρτήματα τα οποία καλύπτουν θεωρητικές βασικές έννοιες που αναφέρονται στα προηγούμενα κεφάλαια και διαγράμματα UML των κλάσεων που υλοποιούνται στην κατηγοριοποίηση (Classification) και στην πρόβλεψη (Prediction) στο Weka και κάποια κομμάτια κώδικα σε Java από την υλοποίηση του προγράμματος. Στην εργασία υπάρχει αρκετή βιβλιογραφία στην οποία γίνονται συνεχείς αναφορές. Στην εργασία υπάρχει αρκετή βιβλιογραφία στην οποία γίνονται συνεχείς αναφορές. Έγινε μεγάλη προσπάθεια στο να καταλάβει κάποιος πόσο σημαντική προσπάθεια έχει γίνει σε αυτό το χώρο της τεχνητής νοημοσύνης (Artificial intelligence) από τον Alan Turing και τους McCulloch και Pitts μέχρι τον Vapnik τον Osuna και τον Platt και πολλούς άλλους μετέπειτα. / The aim of this dissertation is the comparison of two major categories, the Artificial Neural Networks and the, very popular recently, Support Vector Machines on Data Classification and Regression. In the first chapter issues relevant to Data Mining and Data Classification are written, whereas in the second one, several issues from the enormous chapter of Artificial Neural Networks are approached. In this we analyze the reason for their creation, their theoretical part, several of their topologies – architectural and finally the needs that were created from their advantages and disadvantages for better results. In the third chapter we are dealing with the Support Vector Machines, the reason of their popularity, the way of their implementation theoretically and geometrically, their accomplishments and their advantages and disadvantages. In the fourth chapter, via experimental results, we are trying to compare the Artificial Neural Networks to the Support Vector Machines with real aggregate data, patterns or instances, which indicators are those that will finally give us the classifier that is the best. And by saying the best do we imply the most accurate, the fastest or something in between? In the fifth chapter we explain what Regression is and we compare major algorithms from Artificial Neural Networks and Support Vector Machines. In the sixth chapter we implemented an application into Java which performs classification and regression from arff files. It focuses only on classification and regression, while what differentiates it from Weka is Prediction on which we can give an instance and the application can make a prediction on/about it. Finally, we include the Conclusion/Epilogue, the appendices that cover basic theories which refer to previous chapters and UML diagrams of classes that are implemented on classification and Prediction in Weka, as well as some parts of the code in Java from the implementation of the program. In the Dissertation there is the Bibliography on which we constantly refer to. A great effort has been given so that anyone can understand the importance of the attempt that was done on the field of Artificial Intelligence by Alan Turing, McCulloch and Pitts up to Vapnik, Osuna and Platt and many others that followed.
205

Computerized model to forecast low-cost housing demand in urban area in Malaysia using Artificial Neural Networks (ANN)

Zainun, Noor Y. B. January 2011 (has links)
The forecasted proportions of urban population to total population in Malaysia are steadily increasing from 26% in 1965 to 70% in 2020. Therefore, there is a need to fully appreciate the legacy of the urbanization of Malaysia by providing affordable housing. The main aim of this study is to focus on developing a model to forecast the demand of low cost housing in urban areas. The study is focused on eight states in Peninsular Malaysia, as most of these states are among the areas predicted to have achieved the highest urbanization level in the country. The states are Kedah, Penang, Perlis, Kelantan, Terengganu, Perak, Pahang and Johor. Monthly time-series data for six to eight years of nine indicators including: population growth; birth rate; child mortality rate; unemployment rate; household income rate; inflation rate; GDP; poverty rate and housing stocks have been used to forecast the demand on low cost housing using Artificial Neural Network (ANN) approach. The data is collected from the Department of Malaysian Statistics, the Ministry of Housing and the Housing Department of the State Secretary. The Principal Component Analysis (PCA) method has been adopted to analyze the data using SPSS 18.0 package. The performance of the Neural Network is evaluated using R squared (R2) and the accuracy of the model is measured using the Mean Absolute Percentage Error (MAPE). Lastly, a user friendly interface is developed using Visual Basic. From the results, it was found that the best Neural Network to forecast the demand on low cost housing in Kedah is 2-16-1, Pahang 2-15-1, Kelantan 2-25-1, Terengganu 2-30-1, Perlis 3-5-1, Pulau Pinang 3-7-1, Johor 3-38-1 and Perak 3-24-1. In conclusion, the evaluation performance of the model through the MAPE value shows that the NN model can forecast the low-cost housing demand very good in Pulau Pinang, Johor, Pahang and Kelantan, where else good in Kedah and Terengganu while in Perlis and Perak it is not accurate due to the lack of data. The study has successfully developed a user friendly interface to retrieve and view all the data easily.
206

Behavioural Modeling and Linearization of RF Power Amplifier using Artificial Neural Networks

Mkadem, Farouk January 2010 (has links)
Power Amplifiers (PAs) are the key building blocks of the emerging wireless radios systems. They dominate the power consumption and sources of distortion, especially when driven with modulated signals. Several approaches have been devised to characterize the nonlinearity of a PA. Among these approaches, dynamic amplitude (AM/AM) and phase (AM/PM) distortion characteristics are widely used to characterize the PA nonlinearity and its effects on the output signal in power, frequency or time domains, when driven with realistic modulated signals. The inherent nonlinear behaviour of PAs generally yield output signals with an unacceptable quality, an undesirable level of out-of-band emission, high Error Vector Magnitudes (EVMs) and low Adjacent Channel Power Ratios (ACPRs), which usually fail to meet the established performance standards. Traditionally, PAs are forced to operate deeply in their back-off region, far from their power capacity, in order to pass the mandatory spectrum mask (ACPR requirement) and to achieve acceptable EVM. Despite its simplicity, this solution is increasingly discarded, as it leads to cost and power inefficient radios. Alternatively, several linearization techniques, such as feedback, feed-forward and predistortion, have been devised to tackle PA nonlinearity and, consequently, improve the achievable the linearity versus power efficiency trade-off. Among these linearization techniques, the Digital Pre-Distortion (DPD) technique consists of incorporating an extra nonlinear function before the PA, in order to preprocess the input signal to the PA, so that the overall cascaded systems behave linearly. The overall linearity of the cascaded system (DPD plus PA) relies primarily on the ability of the DPD function to produce nonlinearities that are equal in magnitude and out-of-phase to those generated by the PA. Hence, a good understanding and accurate modeling of PA distortions is a crucial step in the construction of an adequate DPD function. This thesis explores DPD through techniques based on Artificial Neural Networks (ANNs). The choice of ANN as a modeling tool was motivated by its proven strength in modeling dynamic nonlinear systems. This thesis starts by providing a summary of the PA nonlinearity problem background, as well as an overview of the most well-known linearization techniques, with a special focus on DPD techniques. The thesis then discusses ANN structures and the learning parameters. Finally, a novel Two Hidden Layers ANN (2HLANN) model is suggested to predict the dynamic nonlinear behaviour of wideband PAs. An extensive validation of the 2HLANN model demonstrates its excellent modeling accuracy and linearization capability.
207

Analyzing Cognitive Presence in Online Courses Using an Artificial Neural Network

McKlin, Thomas Edward 09 December 2004 (has links)
This work outlines the theoretical underpinnings, method, results, and implications for constructing a discussion list analysis tool that categorizes online, educational discussion list messages into levels of cognitive effort. Purpose The purpose of such a tool is to provide evaluative feedback to instructors who facilitate online learning, to researchers studying computer-supported collaborative learning, and to administrators interested in correlating objective measures of students’ cognitive effort with other measures of student success. This work connects computer–supported collaborative learning, content analysis, and artificial intelligence. Method Broadly, the method employed is a content analysis in which the data from the analysis is modeled using artificial neural network (ANN) software. A group of human coders categorized online discussion list messages, and inter-rater reliability was calculated among them. That reliability figure serves as a measuring stick for determining how well the ANN categorizes the same messages that the group of human coders categorized. Reliability between the ANN model and the group of human coders is compared to the reliability among the group of human coders to determine how well the ANN performs compared to humans. Findings Two experiments were conducted in which artificial neural network (ANN) models were constructed to model the decisions of human coders, and the experiments revealed that the ANN, under noisy, real-life circumstances codes messages with near-human accuracy. From experiment one, the reliability between the ANN model and the group of human coders, using Cohen’s kappa, is 0.519 while the human reliability values range from 0.494 to 0.742 (M=0.6). Improvements were made to the human content analysis with the goal of improving the reliability among coders. After these improvements were made, the humans coded messages with a kappa agreement ranging from 0.816 to 0.879 (M=0.848), and the kappa agreement between the ANN model and the group of human coders is 0.70.
208

Artificial neural networks to updrafts localization and forecasting / Terminių srautų aptikimas ir prognozavimas taikant dirbtinius neuronų tinklus

Suzdalev, Ivan 08 March 2013 (has links)
The dissertation examines the thermal flow detection and prediction prob-lems during an autonomous aircraft flight. The main research object is the thermal flows and artificial neural networks. Thermal flows are a very im-portant source for improving autonomous aircraft flight parameters, such as flight time and duration. The primary aim of the dissertation is to create methodologies and algorithms to detect, identify and to successfully predict the parameters the thermal flows. The application are of the methods and algorithms developed is autonomous aircraft control system synthesis, research on mesoscale meteorological phenomena and synthesis of computing systems using biological models. The following objectives are carried out: thermal flow sensing using aircraft navigational parameters measurement data, thermal flow simulation modeling and data input necessary for modeling. The dissertation consists of an introduction, four chapters, conclusions, bibliography, and list of author publications on the topic as well as three annexes. The introductory chapter discusses the research problem and the relevance of the research described in the thesis, formulates the goal and objectives, describes the research methodology, scientific novelty, the practical significance of the results, hypotheses. In the end of the introduction a list of author's publications on the topic and the structure of the dissertation are presented. The first section provides a review of previous... [to full text] / Disertacijoje nagrinėjamos terminių srautų paieškos ir prognozavimo autonominio orlaivio skrydžio metu problemos. Pagrindinis tyrimų objektas yra terminių srautų aparatinis aptikimas ir prognozavimas. Terminiai srautai yra labai svarbus autonominio orlaivio skrydžio charakteristikų, kaip antai skrydžio laikas ir trukmė, gerinimo šaltinis. Pagrindinis disertacijos tikslas – sukurti metodikas ir algoritmus, leidžiančius aptikti terminį srautą, nustatyti bei sėkmingai prognozuoti jo parametrus. Sukurtų metodų ir algoritmų taikymo sritis – autonominių orlaivių valdymo sistemų sintezė, meteorologiniai mezomastelinių meteorologinių reiškinių tyrimai, biologinius skaičiavimo modelius naudojančių sistemų sintezė. Darbe sprendžiami keli uždaviniai: terminio srauto aptikimas naudojant orlaivio navigacinių parametrų matavimo duomenis, terminio srauto modeliavimas bei modeliui reikalingų duomenų pateikimas. Disertaciją sudaro įvadas, keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai ir tris priedai. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir konferencijų pranešimai bei disertacijos struktūra. Pirmajame skyriuje pateikiama su disertacijos... [toliau žr. visą tekstą]
209

Terminių srautų aptikimas ir prognozavimas taikant dirbtinius neuronų tinklus / Artificial neural networks to updrafts localization and forecasting

Suzdalev, Ivan 08 March 2013 (has links)
Disertacijoje nagrinėjamos terminių srautų paieškos ir prognozavimo autonominio orlaivio skrydžio metu problemos. Pagrindinis tyrimų objektas yra terminių srautų aparatinis aptikimas ir prognozavimas. Terminiai srautai yra labai svarbus autonominio orlaivio skrydžio charakteristikų, kaip antai skrydžio laikas ir trukmė, gerinimo šaltinis. Pagrindinis disertacijos tikslas – sukurti metodikas ir algoritmus, leidžiančius aptikti terminį srautą, nustatyti bei sėkmingai prognozuoti jo parametrus. Sukurtų metodų ir algoritmų taikymo sritis – autonominių orlaivių valdymo sistemų sintezė, meteorologiniai mezomastelinių meteorologinių reiškinių tyrimai, biologinius skaičiavimo modelius naudojančių sistemų sintezė. Darbe sprendžiami keli uždaviniai: terminio srauto aptikimas naudojant orlaivio navigacinių parametrų matavimo duomenis, terminio srauto modeliavimas bei modeliui reikalingų duomenų pateikimas. Disertaciją sudaro įvadas, keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai ir tris priedai. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir konferencijų pranešimai bei disertacijos struktūra. Pirmajame skyriuje pateikiama su disertacijos... [toliau žr. visą tekstą] / The dissertation examines the thermal flow detection and prediction prob-lems during an autonomous aircraft flight. The main research object is the thermal flows and artificial neural networks. Thermal flows are a very im-portant source for improving autonomous aircraft flight parameters, such as flight time and duration. The primary aim of the dissertation is to create methodologies and algorithms to detect, identify and to successfully predict the parameters the thermal flows. The application are of the methods and algorithms developed is autonomous aircraft control system synthesis, research on mesoscale meteorological phenomena and synthesis of computing systems using biological models. The following objectives are carried out: thermal flow sensing using aircraft navigational parameters measurement data, thermal flow simulation modeling and data input necessary for modeling. The dissertation consists of an introduction, four chapters, conclusions, bibliography, and list of author publications on the topic as well as three annexes. The introductory chapter discusses the research problem and the relevance of the research described in the thesis, formulates the goal and objectives, describes the research methodology, scientific novelty, the practical significance of the results, hypotheses. In the end of the introduction a list of author's publications on the topic and the structure of the dissertation are presented. The first section provides a review of previous... [to full text]
210

Feature based conceptual design modeling and optimization of variational mechanisms

Wubneh, Abiy Unknown Date
No description available.

Page generated in 0.0735 seconds