• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feature based conceptual design modeling and optimization of variational mechanisms

Wubneh, Abiy 06 1900 (has links)
This research investigates and proposes methods to be used for the automation of the conceptual design phases of variational mechanisms. It employs the concept of feature-based modeling approaches. A method is proposed for integrating the dimensional synthesis, mechanical design and CAD generation phases with minimal designer intervention. Extended feature definitions are used in this research to create a smooth data transfer platform between different engineering tools and applications. This paper also introduces another method by which a set of dimensional data collected from a family of existing products is used to predict possible solutions for a new design. This method, based on artificial neural networks for training and solution generation, is used with optimization algorithms for the dimensional synthesis of mechanisms. An excavator arm mechanism is used as a case study to demonstrate these methods. The design of this mechanism is carried out based on its digging mode configurations. / Engineering Design
2

Feature based conceptual design modeling and optimization of variational mechanisms

Wubneh, Abiy Unknown Date
No description available.
3

A bonded discrete element approach to simulate loading with hydraulic mining excavators

Andersson, Carl January 2021 (has links)
When operating hydraulic mining excavators the loading equipment is exposed to harsh conditions which lead to extensive wear of the equipment, especially the bucket and bucket teeth. Simulations are used to better understand the wear development and to evaluate new methods to operate excavators more efficiently. At the Aitik mine, operated by the high-tech metal company Boliden Mines, hydraulic excavators are used when loading the mined ore. One of the hydraulic excavators used at Aitik is the Komatsu PC7000. In this master thesis, a simulation model for the hydraulic excavator Komatsu PC7000 was developed with the simulation software LS-DYNA. This model consists of multi rigid body dynamics to describe the motion of the excavator and a granular material model to describe the rocks loaded into the bucket of the excavator. Simulations with two different types of granular material models have been utilized to study the wear development of the bucket. One of the models (bonded DE model) uses bonded discrete elements to describe the large rocks and single discrete elements are used to describe smaller rocks. This model is compared to the current FE-DE model which is being used today at Boliden. This model uses finite elements (FE) to model the larger rocks and discrete element spheres (DES) for smaller rocks. By using the bonded DE method a 71\% reduction in simulation time could be achieved. This can be partly explained by the reduction of the number of elements included in the rock pile.  Archard's wear law was used to numerically describe the wear development of the bucket. When simulating the wear a total of 30 bucket fillings were performed with the excavator. This was done with both the bonded DE method and the FE-DE method. In this wear study, the inside of the bucket was of interest. The resulting simulated wear map was compared to experimental measurements from which the plate thickness of the bucket had been measured two times to obtain the wear depth of some points inside the bucket. The experimental measurements and two 3D scanned point clouds were used to determine the wear depth inside the bucket. Results from the simulation showed that the wear is concentrated to the center of the bucket while less wear is concentrated to the sides of the bucket. With the bonded DE method the wear appeared to be more evenly distributed inside the bucket while the wear from the FE-DE method appeared in spots inside the bucket. The experimental results also showed that the wear was more extensive in the center of the bucket and also in the back of the bucket. Both simulation methods also showed that the wear was concentrated to the back of the bucket. From the simulations, it was also seen that the behavior of the material flow differed between the two methods. In the bonded DE method the material flow had more sliding behavior while the material flow in the FE-DE method had more rolling behavior. This could also be the reason why the bonded DE method captures the wear more evenly. The rolling behavior seen in the FE-DE method leads to more impact wear which is not captured by Archard's wear law. Overall, the bonded DE method leads to a big reduction in simulation time which is favorable when it comes to simulation. The larger rocks will have simpler shapes without sharp corners. However, the method allows for a more complex shape than just an ordinary sphere which is the simplest and most common shape to describe granular material. The bonded DE method also allows for easier configuration of contact definition since fewer contact interfaces must be added to the model. Furthermore, the post-processing of wear in LS-DYNA was facilitated since the wear does not have to be divided into two wear collectors for FE elements and DE elements.
4

Modelagem e controle do manipulador de uma escavadeira hidráulica. / Modeling and control of the manipulator of a hydraulic excavator.

Oliveira, Éverton Lins de 30 November 2017 (has links)
Escavadeiras hidráulicas são máquinas versáteis, amplamente utilizadas na construção civil e mineração. Máquinas melhores, mais produtivas, eficientes e que oferecem segurança ao operador são uma demanda constante da indústria. Devido a estes fatores, o controle para a automação de uma escavadeira hidráulica tem sido investigado. Este estudo tem o seu foco voltado para o controle do manipulador do equipamento, que é considerado como um dos elementos fundamentais para o desenvolvimento de uma escavadeira automática. Para desenvolver um sistema de controle viável, primeiramente, foi realizado a modelagem matemática dos subsistemas mecânico e hidráulico do manipulador; posteriormente esses modelos foram acoplados para representar a interação dos subsistemas. Todos os modelos desenvolvidos foram comparados com modelos de referência, obtidos a partir de softwares comerciais dedicados a modelagem de sistema dinâmicos. Tendo sido verificado a capacidade de representação física dos modelos, a fase de projeto do controlador para o manipulador foi iniciada. Para que o controlador seja eficiente, este deve ter duas propriedades essenciais: robustez para lidar com as incertezas e distúrbios severos, e adaptabilidade para lidar com um ambiente de operação altamente dinâmico. A fim de projetar um controlador que considera a dinâmica de cada subsistema do manipulador, a técnica de controle em cascata foi adotada. Esta consiste em dividir o sistema global em subsistemas, de tal forma que seja possível projetar um controlador para cada subsistema. Devido à complexidade do modelo matemático, técnicas avançadas de controle linear e não linear foram combinadas no projeto dos controladores dos subsistemas. O controlador sintetizado foi testado através de simulação numérica, em ambiente MATLAB/Simulink®, na execução de um ciclo completo de trabalho pelo manipulador. Os resultados obtidos foram considerados satisfatórios, mesmo na presença de incertezas, distúrbios severos e de ruídos. Posteriormente, na comparação desses resultados com os de outros controladores, ficou claro que o melhor desempenho foi obtido com o controlador proposto. Isto indica a possível aplicabilidade de tal controlador para a automação deste tipo de equipamento. / Hydraulic excavators are versatile machines, widely used in civil construction and in mining. Better, more productive, and efficient machines that offer operator safety are a constant industry demand. Due to these factors, the control for the automation of a hydraulic excavator has been investigated. This study focuses on the control of the equipment\'s manipulator, which is considered as one of the fundamental elements for the development of an automatic excavator. To develop a viable control system, first, the mathematical modeling of the mechanical and hydraulic subsystems of the manip-ulator was carried out; later these models were coupled to represent the interaction between the subsystems. All the developed models were compared with reference models, obtained from a commercial software dedicated to dynamic system modeling. Having verified the physical representation capacity of the analytical models, the de-sign phase of the controller was started. For the controller to be efficient, it must have two essential properties: robustness to deal with severe uncertainties and disturb-ances, and adaptability to handle a highly dynamic operating environment. To design a controller that considers the dynamics of each subsystem of the manipulator, the cascade control technique was adopted. This consists of dividing the global system into subsystems, in such a way that it is possible to design a controller for each sub-system. Due to the complexity of the mathematical model, advanced linear and non-linear control techniques were combined in subsystem controllers design. The synthe-sized controller was tested by numerical simulation, in MATLAB/Simulink® environ-ment, in the execution of a complete work operation by the manipulator. The results obtained were considered satisfactory, even in the presence of uncertainties, severe disturbances and noise. Subsequently, in the comparison of these results with those of others controllers, it was clear that the best performance was obtained with the pro-posed controller. This indicates the possible applicability of such a controller to the automation of this type of equipment.
5

Modelagem e controle do manipulador de uma escavadeira hidráulica. / Modeling and control of the manipulator of a hydraulic excavator.

Éverton Lins de Oliveira 30 November 2017 (has links)
Escavadeiras hidráulicas são máquinas versáteis, amplamente utilizadas na construção civil e mineração. Máquinas melhores, mais produtivas, eficientes e que oferecem segurança ao operador são uma demanda constante da indústria. Devido a estes fatores, o controle para a automação de uma escavadeira hidráulica tem sido investigado. Este estudo tem o seu foco voltado para o controle do manipulador do equipamento, que é considerado como um dos elementos fundamentais para o desenvolvimento de uma escavadeira automática. Para desenvolver um sistema de controle viável, primeiramente, foi realizado a modelagem matemática dos subsistemas mecânico e hidráulico do manipulador; posteriormente esses modelos foram acoplados para representar a interação dos subsistemas. Todos os modelos desenvolvidos foram comparados com modelos de referência, obtidos a partir de softwares comerciais dedicados a modelagem de sistema dinâmicos. Tendo sido verificado a capacidade de representação física dos modelos, a fase de projeto do controlador para o manipulador foi iniciada. Para que o controlador seja eficiente, este deve ter duas propriedades essenciais: robustez para lidar com as incertezas e distúrbios severos, e adaptabilidade para lidar com um ambiente de operação altamente dinâmico. A fim de projetar um controlador que considera a dinâmica de cada subsistema do manipulador, a técnica de controle em cascata foi adotada. Esta consiste em dividir o sistema global em subsistemas, de tal forma que seja possível projetar um controlador para cada subsistema. Devido à complexidade do modelo matemático, técnicas avançadas de controle linear e não linear foram combinadas no projeto dos controladores dos subsistemas. O controlador sintetizado foi testado através de simulação numérica, em ambiente MATLAB/Simulink®, na execução de um ciclo completo de trabalho pelo manipulador. Os resultados obtidos foram considerados satisfatórios, mesmo na presença de incertezas, distúrbios severos e de ruídos. Posteriormente, na comparação desses resultados com os de outros controladores, ficou claro que o melhor desempenho foi obtido com o controlador proposto. Isto indica a possível aplicabilidade de tal controlador para a automação deste tipo de equipamento. / Hydraulic excavators are versatile machines, widely used in civil construction and in mining. Better, more productive, and efficient machines that offer operator safety are a constant industry demand. Due to these factors, the control for the automation of a hydraulic excavator has been investigated. This study focuses on the control of the equipment\'s manipulator, which is considered as one of the fundamental elements for the development of an automatic excavator. To develop a viable control system, first, the mathematical modeling of the mechanical and hydraulic subsystems of the manip-ulator was carried out; later these models were coupled to represent the interaction between the subsystems. All the developed models were compared with reference models, obtained from a commercial software dedicated to dynamic system modeling. Having verified the physical representation capacity of the analytical models, the de-sign phase of the controller was started. For the controller to be efficient, it must have two essential properties: robustness to deal with severe uncertainties and disturb-ances, and adaptability to handle a highly dynamic operating environment. To design a controller that considers the dynamics of each subsystem of the manipulator, the cascade control technique was adopted. This consists of dividing the global system into subsystems, in such a way that it is possible to design a controller for each sub-system. Due to the complexity of the mathematical model, advanced linear and non-linear control techniques were combined in subsystem controllers design. The synthe-sized controller was tested by numerical simulation, in MATLAB/Simulink® environ-ment, in the execution of a complete work operation by the manipulator. The results obtained were considered satisfactory, even in the presence of uncertainties, severe disturbances and noise. Subsequently, in the comparison of these results with those of others controllers, it was clear that the best performance was obtained with the pro-posed controller. This indicates the possible applicability of such a controller to the automation of this type of equipment.
6

シミュレーションによる油圧ショベルの自動化に関する研究 / シミュレーション ニヨル ユアツ ショベル ノ ジドウカ ニカンスル ケンキュウ

吉田 達哉, Tatsuya Yoshida 22 March 2014 (has links)
本研究では油圧ショベルの生産性の向上のための掘削制御方策の確立をシミュレーションモデルによって行い,その有効性の検証を行うことを目的とした.個別要素法を用いて土壌を離散的に解析することで,掘削の生産性を評価できるモデルを構築した.さらに油圧ショベルの動力学モデルを構築することで掘削作業を行うために必要なエネルギを解析する.この2つモデルを組み合わせ,掘削に必要なエネルギあたりの掘削量を生産性の指標として,生産性の定量的評価を行う. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
7

油圧ショベルにおける自動掘削アルゴリズムの有効性検証 / ユアツ ショベル ニオケル ジドウ クッサク アルゴリズム ノ ユウコウセイ ケンショウ

平野 貴司, Takashi Hirano 19 September 2020 (has links)
本研究では,油圧ショベルの効率の良い自動掘削を目的として,提案した自動掘削アルゴリズムを,個別要素法を用いた土壌モデルと油圧ショベルの動力学モデルを組みわせたシミュレーションモデルによって検証する.さらに,シミュレーションの実機検証を目的として,油圧で駆動する模型を用いて,縮小モデル実験機を構築し,提案した自動掘削アルゴリズムの実機検証実験を行う. / In this study, for the purpose of efficiency automatic digging of hydraulic excavators, the proposed automatic digging algorithm is verified by the simulation model that combines a soil model using the Distinct Element Method and a dynamic model of the hydraulic excavator. Furthermore, for the purpose of verifying by the actual excavator, a scale model experimental machine is constructed using a hydraulically operated model excavator, and the actual machine verification experiments of the proposed automatic digging algorithm are conducted. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0639 seconds